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Abstract— Securing multi-robot teams against malicious ac-
tivity is crucial as these systems accelerate towards widespread
societal integration. This emerging class of ‘“physical networks”
requires new security methods that exploit their physical
nature. This paper derives a theoretical framework for securing
multi-agent consensus against the Sybil attack by using the
physical properties of wireless transmissions. Our framework
uses information extracted from the wireless channels to de-
sign a switching signal that stochastically excludes potentially
untrustworthy transmissions from the consensus. Intuitively,
this amounts to selectively ignoring incoming communications
from untrustworthy agents, allowing for consensus to the true
average to be recovered with high probability after a certain
observation time 7. This paper allows for arbitrary malicious
node values and is insensitive to the initial topology of the
network so long as a connected topology over legitimate nodes in
the network is feasible. We show that our algorithm will recover
consensus, and the true graph over the system of legitimate
agents, with an error rate that vanishes exponentially with time.

I. INTRODUCTION

Multi-robot systems are at the horizon of wide-spread inte-
gration into our societies; as fleets of autonomous vehicles,
delivery drones, and smart and mobile Internet of Things
(IoT) devices. This promise has spurred a great amount of
research both in academia and industry, accelerating the pace
at which this vision can come to fruition. However, as these
multi-robot systems become pervasive, security becomes
paramount. At the heart of many multi-robot coordination
tasks are algorithms such as coverage or consensus which
are inherently vulnerable to adversarial action such as the
Sybil attack. In the Sybil attack, a single adversarial node
can “spoof” or generate a large number of spurious entities
in the graph as a way of gaining a disproportionate influence
in the network [1], [2]. In this way the Sybil attack can
be detrimental to several critical multi-robot algorithms [3].
Additionally, the dynamic and distributed nature of multi-
robot systems makes it particularly difficult to implement
traditional methods of security such as authentication and
key passing [4], [5], making it even more challenging to
secure these systems against a Sybil attack. Interestingly, the
physicality of these systems presents new opportunities for
security. Recent developments in Wi-Fi characterization [6],
[7], [8] demonstrate the ability to extract information from
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Fig. 1. Convergence of consensus using our protocol and switching
function for static (left col) and time varying (right) spoofed node input.

communicated wireless signals that can be used to detect ma-
licious actors in the network. As a wireless signal propagates
between communicating agents it is reflected, absorbed, and
scattered by objects in the environment in a phenomenon
called multipath [9]. This multipath signature can act as a
“fingerprint” of the transmission [6], with clear implications
for security. This suggests a new approach for the security
of physical networks and multi-robot coordination that does
not rely on additional data beyond communication signals
present in the system, or additional overhead such as key
passing for authentication. However, to fully exploit the use
of wireless signals for thwarting attacks on multi-robot sys-
tems we need new theory that exploits this latent information
in the network to improve achievable consensus results.

Towards this end, the focus of the current paper is to
develop a theoretical framework for using observations of
inter-agent wireless channels to secure consensus in the face
of a Sybil attack and to characterize expected performance
guarantees for this case. It is well known that in the presence
of uncooperative or adversarial nodes, the ability to achieve
consensus is severely impaired or lost [1]. Given a network
of agents that includes an unknown subset of spoofed nodes,
we wish to achieve convergence to a common consensus
value over the legitimate nodes that is irrespective of spoofed
node input to the system (see Figure 1). The key insight of
our approach is to design a switching signal that selectively
ignores or includes agents in a stochastic manner, according
to an honesty metric [6], derived from multiple observations
of their wireless channels (for each transmission in the net-
work). Intuitively, this switching signal learns the legitimate
network topology (one that excludes spoofed nodes) with an
error rate that decreases exponentially fast in the number of



observations of the wireless channel. By deriving both the
switching signal and a modified consensus algorithm, we
show that legitimate agents can achieve agreement and that
this agreement value can be forced arbitrarily close to the
true average with high probability that is also characterized
in this paper.

This work improves upon existing work in adversarial

consensus [10], [11], [7] in several ways: i) Resilience is
achieved irrespective of the values transmitted by the spoofed
nodes, ii) it does not assume knowledge of the number of
spoofed nodes in the network, and iii) it is robust to different
initial topology configurations.
Paper Contributions: The current paper provides the fol-
lowing contributions: 1) derivation of a consensus algorithm
and switching signal for resilient consensus using wireless
channel observations, 2) analysis demonstrating the con-
vergence properties of this algorithm, and 3) an extensive
simulation study demonstrating aggregate performance of
our algorithm for different initial topologies and static vs.
time varying spoofed node inputs.

II. RELATED WORK

Consensus is a critical algorithm for cooperative multi-
agent decision making and control. Traditional assumptions
of cooperation and trust within the network leave consensus
algorithms inherently vulnerable to adversarial attacks. The
Sybil attack is one such classic example. Cryptographic and
key passing schemes are one common approach to securing
multi-agent consensus [4], [5], [12]. These schemes provide
excellent security for typical networks but require compu-
tational and communication overhead and trust in a central
authority. Alternatively, data-based methods for resilient con-
sensus can be characterized by analyzing transmitted values
to deduce the malicious nature of the agents, leaving them
vulnerable to sophisticated attackers that may intentionally
manipulate their values to avoid detection. Research in
Mean Sub-sequence Reduced (MSR) [13], [14], [15] focus
on transmitted values in order to remove adversarial agent
influence from the consensus.

Methods relying on the physics of the communication
signals themselves offer an interesting alternative to data-
based methods. Mobile robot systems often communicate
over wireless radio signals and it has been shown that
useful information can be extracted from these signals [16],
[17]. Traditionally, these types of approaches would require
expensive hardware, like multi-antenna arrays, that cannot be
mounted on small robotic platforms. However, recent tech-
niques based on Synthetic Aperture Radar (SAR) [18] have
been adapted to cheap commodity Wi-Fi radios suitable for
robotic platforms [8], [19]. This opens up a theoretically rich
set of physical sensing capabilities, without needing to rely
on additional hardware. Moreover, prior work has already
demonstrated some practical applications in localization [19],
coverage [6], [20], and consensus [7].

This paper builds upon advances in adversary detection
using Wi-Fi signals [6], [21], and rich theory in consensus
over switching or time-varying graphs [22], [23], [24], [25],

[26], [27], [28], [29], [30], [31] to derive a mathematical
framework for recovering average consensus in the case
of a Sybil attack. This work is different from data-based
methods [10], [11] because it makes observations over the
wireless network, allowing our algorithm to be largely in-
dependent of transmitted values. This is generalizable to
a larger set of attacker behaviors including dynamically
changing input values as shown in our simulation studies
in the Simulation Section.

III. PROBLEM

We consider the problem of distributed consensus for
multi-agent systems where a subset of nodes in the graph
are adversarial and attempt to disturb the consensus abil-
ity of the network by inputting false values. Specifically,
the multi-robot system can be described by a weighted,
undirected, state-dependent graph G(t) = (V,&(t)), where
V ={1,..., N} denotes the set of node indices for N robots
and W : VxV xR, — R, denotes the set of edge weights
at time ¢ such that w;;(t) = W(4,5,t) for ¢,5 € V. The set
E(t) = {(4,7)|w;;(t) > 0} is called the set of undirected
edges of G. The set of neighbors of node 7 is denoted by
N;(t)={j €V:(i,j) € E(t)} where agent i € V has value
denoted by x;(t) € R. Note that we assume undirected edges
and symmetric neighborhoods such that if j € N;(¢) then
i € Nj(t). Furthermore, the algebraic connectivity of a graph
G is the second smallest eigenvalue of the Laplacian matrix
of the graph and is denoted A2(G). It is well known that a
positive algebraic connectivity, A2(G) > 0, is possible if and
only if the graph G is connected [32]. We consider the case
where a subset of nodes with indices denoted by S, S C V,
are spoofed, such that ng = |S| is assumed to be unknown.
Nodes in the set £ = V\S are not spoofed, which we denote
as legitimate. As aresult, N = ng+ngs, where ny = |£]. We
denote by Gs = (Vs, Es) the subgraph induced by S, where
Vs =S and Es = {(i,4)|i € S or j € S}. Similarly, we
denote by G, = (V., &) the subgraph induced by £, where
Ve=Land E ={(i,))|i,7 € L}. Thus G = Gs UGy.

A. Threat Model

Our threat model considers one or more adversarial agents
with one omnidirectional Wi-Fi antenna each. Adversarial
agents perform the “Sybil Attack” to inject packets emulating
ns non-existent clients according to the following definition:

Definition II1.1 (Sybil Attack). An adversary in the network
can control the values of one or more “spoofed” nodes in the
network by simultaneously sending various messages over
the network with unique IDs {ji,j2,...} € S in order to
gain a disproportionate influence in the network. We assume
that graph G is known, but the set of clients that are spoofed
(i.e., in §) is unknown. If an agent j is a spoofed node then its
value at time ¢, denoted by (), can be arbitrarily controlled
by an adversarial agent in the network. This value is assumed
to be finite for all time so that |z;(t)| < » for some n > 0
for all ¢ and for all j. We also assume that spoofed nodes
will remain spoofed at all times and legitimate nodes will
remain legitimate at all times ¢ > 0.



B. Detecting Sybil Attacks using Wireless Signals

Our previous work developed a method for measuring
directional signal profiles using channel state information
(CS]) from the wireless messages over each link (7,j) in
the network [8], [19]. These profiles measure signal strength
arriving from every direction in the 3D plane. This paper
builds upon our previous work that derived a measurable
scalar value «;; that captures the likelihood that a transmis-
sion between two communicating agents ¢ and j is legitimate
or spoofed in the sense of a Sybil attack:

Definition IIL2. (Confidence Weights o;;) Our previous
work [6] theoretically derived and rigorously tested (in
hardware experiments) the existence of a scalar value «;; €
(—=1/2,1/2) for the wireless channel between any two com-
municating agents ¢ and j, capturing the likelihood that the
transmission is spoofed in the Sybil sense. Importantly, it was
shown that in expectation, these « scalars will be bounded
less than zero for spoofed transmissions and above zero for
legitimate transmissions within an epsilon bound such that
E[O&ij] < 71/24’65 lfj € S and E[OLU] > 1/276L lf] eL.
Here the bounds, €s, and €, are error terms characterized
in [6] that indicate the quality of the a-measurements and
can be determined in closed form as a function of signal
to noise ratio (SNR) of the channel, number of agents, and
channel constants. Intuitively, the higher the signal quality,
the smaller the e¢s and ¢, and the easier it is to detect
spoofed nodes transmitting messages in the system. In this
paper, we only utilize the fact that SNR of the wireless
messages is high enough (i.e. the link is of good quality)
such that eg, ez € (0,1/2).

The objective of the current work is to develop a theoreti-
cal framework for using derived wireless channel information
as captured by the a-measurements for robust consensus of
multi-robot systems in the face of a Sybil Attack with switch-
ing network topologies. More information on the nature and
derivation of the « values is included in the appendix.

C. Threat Resilient Consensus

We consider the distributed linear consensus protocol

wi(t+1) = Wi i, )z () + > W, j,ta;(t). (1)
JEN;

Our recent work [7] derived a weight matrix W(t) using
all observations on the wireless channels,{c(0), ..., a(t)},
such that the disturbance of the spoofed nodes on reaching
average consensus could be bounded by a computable bound
Amax (P, ) with user-specified probability 6 € (0,1) and
problem parameters P = (ns,nz,1,€s) so that

T
P ( lim e (t) — 2220
t—o00 ne

for some finite A(P,d) < A (P, d), where
{1, if node 7 is legitimate
v; = .

< A(P,5)> >1-4,

0 otherwise

(See Theorem 1 in [7]). The current paper relaxes two
critical assumptions from [7] with significant effects on

the resiliency of the resulting consensus. In particular, the
current paper does not assume a static network topology or
knowledge of the number of spoofed nodes in the network.
The objective of this paper is to determine which edges in
the network to switch on or off over the evolution of the
consensus in order to eliminate spoofed node influence in
the network in an asymptotic sense. By making observations
over the wireless channels (i.e. a sequence of «;;(t) values),
our problem is to learn the topology of the graph over which
to perform consensus such that the influence of the spoofed
node values on the consensus vanishes at an exponential rate.

Given an allowable edge set & = {(i,j)]i,j € V},
where V C {1,..., N}, let s(8;;(t)) : R — {0,1} denote
a switching signal for a particular edge in £. We define
Bi;(t) = Z?:o i;(1). Note that the allowable edge set &
contains all the possible edges that can be connected in
the graph. This need not be the complete graph but should
include a connected graph over legitimate nodes.

Denoting by s(t) the collection of all switching signals for
each edge at time ¢ so that s(t) = {s(8;;(t)) for all (4,5) €
E}, we define E(s(t)) = {(4,5) : i,j € V and s;5(t) = 1}
to be the selected edge set and G(t) = (V(s(t)),E(s(t)))
to be the graph defined by this edge set. The problem that
this paper addresses is that of finding s(t), and subsequently
G(¢), such that executing the consensus algorithm over the
graph G(t) will converge for all legitimate nodes in the
graph. Specifically,

Problem 1 (Switching Signal for Sybil-Resilient Consensus).
Given an allowable edge set £ = {(i,4)|i,j € V}, where
V C {1,...,N}, find a switching signal s(3;;(t)) : R —
{0,1} for each edge (i,j) € & such that the dynamics in
Equation (1) executed over G(t) (chosen by the switching
signal) will converge for all legitimate nodes to a scalar value
z* € R, ie. x; — =¥, with high probability. Additionally,
T* # xs with s being the spoofed node values.

We are also interested in the characterization of a time 7T
such that if observations over the wireless channels begin at
time ¢ = 0, and network topology is controlled from time
t = 0 using the switching signal found in Problem 1, but
consensus is allowed to start at a later time t = T, then
with high probability we can recover Sybil-free consensus.

Problem 2 (Characterization of Tj). We wish to characterize
a time Ty(d) such that for any 6 € (0,1), the network
topologies selected by the switching signal from Problem 1
result in G(t) C {(V,E(¢)) : E(t) = &} for all t > Ty
with probability 1—4. In other words, a consensus algorithm
starting at any time ¢ > Ty over the graphs selected by the
switching function, G = {V,&(s(t))}, can achieve Sybil-
free consensus (where spoofed node influence is eliminated)
with probability of at least 1 — .

In this paper we will use a slight modification of the
weights defined in [7] where we do not assume knowledge of
the cardinality of the spoofed node set ng or legitimate node
set ng. We choose each element in our weighting matrix



W(¢) in the following way, where f;;(t) = Zfzo a;;(1):

L emBu/2) if B(t) > 0,s4(t) = 1

1 Bis(t) e S
Wi, g ) =420 if B () < 0,s45(t) =1

1=, W(i,lt), ifi=jsi(t)=1

0, else

2

Where n is the number of nodes included in the consensus
graph, i.e. having an edge (i,j) € £(s(t)), as determined
by the switching function from Problem 1 being posi-
tive s(B;;(t)) > 0 and we assume symmetry such that

We summarize the assumptions used throughout the paper
here for ease of reference:

Assumption 1. /) Nature of agents: We assume that le-
gitimate agents remain legitimate for all time t and
spoofed agents remain spoofed for all time t.

2) Undirected edges with symmetric weights: We assume
that edges are undirected and that observations over
the wireless channel for a given edge are symmetric
so that w;;(t) = w;;(t) for all time t and all edges
(i,4) € E(¢). -

3) Graph topology: The allowable edge set £ over which
the derived switching signal s(f,;;(t)) is defined in
Problem 1 includes a connected graph over legitimate
nodes.

IV. ANALYSIS

In this section we derive a switching function s(8;;(t)),
that determines which edges of the graph to include in the
consensus and which to delete, and that keeps legitimate
nodes and excludes the spoofed nodes with high probability.
In particular we define our switching function as:

1, if B;;(t) >0
() = 3
(8 (1) {O’ o @
where 3;;(t) = > ;,5:0 a;;(1) is the cumulative sum of

repeated observations «;;(t) of the wireless channel between
two agents ¢ and j. In the sequel, we will use a shorthand
notation of s;;(t) for s(f5;;(¢)). By applying this switching
function to the graph we have that our edge set is composed
of only edges (¢,j) for which s;;(t) = 1 so that (by
Assumption 1.ii we also have the symmetric condition that
sji(t) = 1) @) = {(i,4) : (i,4) € &€ and s;5(t) =
1}. Notice that this graph may not be connected over all
legitimate nodes at some times ¢ and that spoofed nodes may
or may not be included in the edge set £(t) for some times .
We will show that this choice of switching function however,
allows for asymptotic convergence of the legitimate nodes to
x* where x* # xg and xgs is the spoofed node value. This
is our first result summarized below as Proposition | and is
the solution to Problem 1 from Section III.

Proposition 1 (Convergence of Legitimate Nodes to Consen-
sus). Using the switching signal s;;(t) from Equation (3) the

consensus dynamics from the proposed protocol with weights
as described in Equation (2) yield node values x; — x* as
t — oo for all i € L where v* # xs. In other words, the
system composed of legitimate nodes converges to a single
consensus value irrespective of the input of spoofed nodes in
the system.

Proof. Theorem 2 from the paper [33] provides for conver-
gence of discrete consensus dynamics over switching graph
topologies with mild requirements on connectivity where
consensus is attainable on a graph G = (V, &) so long as
W(i,7,t) > 0, i.e. (i,7) € & infinitely often. We will show
that for our choice of switching signal from Equation (3)
this condition is true for the edge set over legitimate nodes
Er and not for Eg. Specifically, to satisfy the condition of
Theorem 2 from [33] we must show that for all 4, j, ¢:

i Our node weights W (4, j,¢) are always positive so that
da > 0 s.t. if W(4,4,t) > 0 then W(i, 4,t) > a.

ii The weight matrix has a positive diagonal such that
W(i,i,t) > a for all ¢ and t.

iii The choice of weights satisfy a cut-balance assumption
defined in [33] as: for any nonempty proper subset S
of {1,...,N} there exists ¢ € S and j ¢ S with
W(i,j,t) > 0 if and only if there exists i’ € S and
5 ¢S with W(j’,4',t) > 0.

iv For the graph G(t) = (V,£(t)) in which (i, ) € £(t)
if s;;(t) = 1 we have that s;;(t) = 1 occurs infinitely
often for (4, j) € £, and moreover, s;;(t) = 1 does not
occur infinitely often for (i, 7) € &s.

We have that conditions (i)-(ii) are satisfied by the definition
of W(i,j,t) in Equation (2) for all ¢, j,¢. The cut balance
condition (iii) holds true by Proposition 1 in [33] since our
definition of W is average-preserving at each time ¢ and we
assume symmetric weights and undirected edges (see As-
sumption 1). Lastly, condition (iv) holds by a straightforward
application of Corollary 1 from our previous paper [7] in
the following way. For each ¢ € N let A;;(¢) denote the
undesirable event that 3;;(t) > 0 if j € S and alternatively
the (undesirable) event 3;; < 0 if j € L. By Corollary 1
from [7] we have that Y ;= P(A;;(t)) < 32, exp(—tc) <
oo since it is a geometric series with ¢ = (1/2 — €5)?
where €5 < 1/2 by the definition of «;;(t) (Definition III.2).
Therefore we have that the probability that the event A,; (%)
(i.e. si5(t) =1 for (i,7) € Es or s;5(t) =0 for (4,7) € Er)
occurs for infinitely many values of ¢ is 0. Thus the event
that s,;(t) = 1 for (¢,j) € & or s;;(t) =0 for (,5) € Es
occurs for infinitely many values of ¢ with probability 1. In
other words, 1) the number of times that legitimate agents
share an edge (i,5) € £(¢) for all (¢,;) € £ is unbounded,
and 2) the number of times that legitimate nodes share an
edge with spoofed nodes is bounded, and condition (iv) is
satisfied. This establishes the claim. ]

Remark (Nature of x*). Proposition | states that legitimate
nodes will converge to the same value. Because this paper
uses a similar definition for w;;(t) as [7] where convergence
to a value within bounded distance to the true average is



guaranteed, we expect that x* will also be bounded close to
the true average though we do not prove this here.

Proposition 1 implies that in the limit as ¢ — co we expect
that the topology chosen by the switching function s;;(t)
converges to the true topology over the legitimate nodes.
More specifically, the probability of our switching signal
choosing a spoofed edge as part of the graph topology G/(t)
decays exponentially with ¢. Therefore we can expect that
there exists a time 7y such that for ¢ > Ty the topology
E(s(t)) will be equivalent to the subgraph over legitimate
nodes &£, and thus that a consensus algorithm run over the
graph defined by the edges £(s(t)) will be free of influence
from the spoofed nodes with high probability. We formalize
this in the following proposition which is the solution to
Problem 2 from Section III:

Proposition 2 (Characterization of consensus start time
To). For uncorrelated c;; values, G(t) selected by the
switching signal s(t) from Equation (3), and some user
defined allowable probability of error § € (0,1), there is
some finite Ty such that consensus over G(t) started at time
t > Ty converges to the true average with high probability.
Specifically, running Algorithm 1 over the graph G(t) that
is started at time t > Ty converges to the true average with
probability at least 1 — 6. Furthermore, this consensus start
time is found to be Ty = —1 In(dc) where ¢ = (es — 1/2)%

Proof. By Lemma 1 from our previous work [7] we have
that for any link (i,7) with j € S, t € N, and a sequence
of weights (a;;(0),...,a;;(t)), the probability that j;;(¢)
is non-negative decays exponentially fast with ¢ such that
P(B;j(t) > 0) < exp(—t(es — 1/2)?) = exp(—ct) where
c = (es — 1/2)? and reflects the quality of the wireless
channels. Lemma 1 from [7] also states that for a legitimate
node where j € £ we have that P(3;;(t) < 0) < exp(—tc).
Thus by defining A, as the undesirable event that 3;;(t) > 0
for any link (¢,7) with i € S or j € S, or 3;;(t) < 0 for
any link (7,7),4,j € £, we have that the probability of A;
occurring for any time in ¢t > Tj is IP’(U;ZTO At). By the
union bound we have that

IP( [OJ Ap) < i P(A;) < i exp(—tc) 4)

t=Ty t=Ty t=To

Setting the above probability to be at most § and up-
per bounding the infinite sum (a geometric series) gives
Lexp(—cTpy) < 6. Solving for Tp gives Ty > —11In(dc)
which establishes the claim. ]

V. SIMULATION

Through a comprehensive simulation study, we compare
the consensus protocol described in this paper with the
resilient consensus protocol from [7], as well as a general
consensus protocol without resilience from [23]. We carry
out each simulation as follows. Legitimate agents are ini-
tialized with values x(¢) sampled uniformly in the interval
(0,10), and at each time step each node 4 updates its state
x;(t + 1) according to the local information available to it.
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Fig. 2. Spoofed and legitimate (3;;(t) values of legitimate links (blue)
and spoofed links (red) and the algebraic connectivity A2 of the legitimate
sub-graph (blue) and malicious subgraph (red).

The spoofed nodes adhere to one of two strategies, Strategy
1: broadcast a constant value or Strategy 2: use a time
varying sinusoidal function to generate broadcasted values.
Spoofed nodes do not cooperate in the consensus update
Algorithm 1.

We simulate observations
from a Gaussian distribution with [E[oy;(t)] =
er, Vj € L and E[;(t)] = es Vj€S. The mean eg
is a simulation parameter but the standard deviation of
the distributions are held at o = 0.33. Intuitively, for eg
close to zero, it is harder to distinguish between legitimate
and spoofed nodes and will take longer to converge to the
legitimate sub-graph G . Figure 2 plots the /3 values and
the algebraic connectivity of the spoofed graph Gg and
the legitimate graph (G over time for simulations with
es = —0.3, es = —0.1, ¢g = —0.05. Figure 3 shows
the average and standard deviation of disagreement over
time for 1000 simulations, obtained from sweeping through
different values of eg € [-0.4,—0.1] for each of the
algorithms mentioned on Network 1 and Network 2. Figure
4 shows the values over time for different runs for each of
the 3 different algorithms, with spoofing Strategy 1 & 2.

a;;(t) by sampling

The simulations are consistent with Proposition 1, as
we see that as time ¢ — oo the node values approach
consensus x; — x* Vi € L. Additionally we see that the
results in Figure 2, consistent with Proposition 2, as time
increases, the probability of a spoofed node being classified
as legitimate approaches zero, and the switching signal in
Equation (3) converges to the legitimate sub-graph G (¢).
Additionally, although we do not prove this, the empirical
evidence from simulation bolsters our remark that the bounds
on this algorithm may be tighter than that of [7].



Comparison to Related Consensus
Implementations
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Algorithm 1: Wi-Fi Resilient Consensus
input : G(t —1),8(t —1),S(t — 1),xz(t — 1),
Oéij(t — 1),t
output: x(t),5(t)
1 for all (i,5) € |V| x |V| where i # j do
2 6ij(t)=ﬁij(t — 1) + ai]‘(t — 1)
3 if t > T, then
4 le(t) =
%(1 — 676”'(75)/2), if sz(t) > 0 and Sij(t) =1
ﬁeﬁij(t), if ﬂij‘ (t) <0 and Sij (t) =1
=2 Wa(), ifi=j
0 otherwise
Wii(t) = Wi;(t)
6 end
7 return x(t),5(t)

VI. CONCLUSION

This paper provides a novel algorithm for resilient consen-
sus in Wi-Fi networks by controlling the network topology.
Results are based on wireless channel observations (signal
profiles), created by complex multi-path fading. Analytical
results of this paper provide conditions for achieving con-
sensus over legitimate node values within a user-defined
probability. Simulation results validate this analysis wherein
the network converges to the average of the legitimate node
values while asymptotically disconnecting the spoofed nodes.

APPENDIX

Our previous work developed a method for measuring
directional signal profiles using channel state information
(CSI) from the wireless messages over each link (i,7)
in the network [8], [19]. These profiles measure signal
strength arriving from every direction in the 3D plane.
Directional signal profiles display two important properties:
1) transmissions originating from the same physical agent
have very similar profiles and 2) energy can be measured
coming from the direct-line path between physical agents.
For simultaneous transmissions from a spoofed node these
transmission profiles are similar from the same physical
node. This is captured quantitatively by «;;. The paper [6]
quantifies these properties, providing an analysis that shows
both analytically and experimentally, that a single scalar
value o;; € (—0.5,0.5) (shifted by -0.5 from [6]) can be
computed for each signal profile that quantifies the likelihood
that the transmission is coming from the same physical
(spoofed) node, or a unique (legitimate) node; a property
critical for thwarting Sybil Attacks. Intuitively, the «;; was
shown experimentally and theoretically to be close to -0.5
if one of the agents j is a spoofed node and close to 0.5 if
both agents are legitimate nodes in the network [6]. This is
captured quantitatively by the bounds on the expectation of
the «a;;. Note that the quality of the bounds, as captured
by the epsilons, will depend on the number of spoofed
nodes (becoming more lose as the number of spoofed agents
increases). For the purposes of the consensus algorithm
presented in this paper we do not need to know the number
nr, of spoofed agents, however this number is used in [6] and
can be estimated from the number of similar transmission
profiles in the system as characterized by the similarity
metric in [6].
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