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Abstract—  We consider the problem of satisfying commu- @ Router Robot
nication demands in a multi-agent system where several role ® Client Agent
cooperate on a task and a fixed subset of the agents act as mebil
routers. Our goal is to position the team of robotic routers b <50 Mb/s
provide communication coverage to the remaining client robts. N
We allow for dynamic environments and variable client demauls, \Q

thus necessitating an adaptive solution. We present an innative
method that calculates a mapping between a robot's current RN
position and the signal strength that it receives alongeach ’ . Q
spatial direction for its wireless links to every other robot. We 12 Mb/s, N : p:
show that this information can be used to design a simple ,' AN ,
positional controller that retains a quadratic structure, while ’ AN ,50 Mb
adapting to wireless signals in real-world environments. lgtably, { 4 /s
our approach does not necessitate stochastic sampling alpn o

directions that are counter-productive to the overall coodination

goal, nor does it require exact client positions, or a known rap . ) o

of the environment. Fig. 1. Picture of a network of two robot routers satisfyihg demands of
three clients in an environment with an occluding obstadi®se position is
unknown.

~ Obstacle

I. INTRODUCTION

There are many projects on today’s frontier that are pushing
the capabilities of multi-agent systems. Swarm robotitesys predict due to complex interactions with the environmeichsu
perform many complex tasks through coordination, such &§ multipath, where the signal is reflected and/or atteduate
cooperative search of an environment, consensus, rengezv8y multiple objects in the environment before arriving at a
and formation control [Cortes et al., 2004; Jadbabaie et deceiver [Goldsmith, 2005; Lindhe et al., 2007; Malmircimeg
2003; Olfati-Saber et al., 2007]. Googlésoject Loon Face- and Mostofi, 2012]. Past literature employs two broad strate
book’s Connectivity Laband similar projects envision using agies to address this challenge. On the one hand, there is the
network of controllable routers to provide wireless comimunEuclidean disk model which assumes that the signal quality
cation infrastructure in remote areas of the world. At tieeire, 0f a link is a function of distance between the communi-
these systems rely on coordination between agents [Carte§@ting vehicles. This model is deterministic and simpled an
al., 2004; Moreau, 2004; Spanos and Murray, 2005; Tahbd®ence when incorporated in a robotic controller, yieldspsen
Salehi and Jadbabaie, 2007], making reliable communitatigositional optimizations for a wide range of collaborative
of primary importance. Beyond simply maintaining connedasks [Cortes et al., 2004; Jadbabaie et al., 2003; Olfati-
tivity, reliable communication may mean supporting hegero Saber et al., 2007]. Unfortunately, the Euclidean modebés t
neous and possibly time-varying communication rates aston§implistic and fails to represent wireless signals in stiali
different pairs of agents. For example, some agents may n@&ironments [Malmirchegini and Mostofi, 2012]. On the othe
to use the network for transmitting video while others majand, there are stochastic sampling methods [Fink et al.,
simply wish to transmit status information. 2012; Malmirchegini and Mostofi, 2012; Yan and Mostofi,

We focus on problems where an auxiliary team of rob@013a] that measure the wireless signal strength in a ®bot’
routers can be deployed to establish reliable wireless cowicinity to fit parameters for intricate probabilistic coram
munication to a team of client agents who are performing axication models. While such methods are not oblivious to
independent task. As depicted in Figure 1, we wish to contréireless channels, they require exploratory sampling dhi
the positions of robot routers to establish communicatioksl and Johansson, 2010] along directions that may be counter-
that are capable of supporting variable demanded rateseto @foductive to the overall coordination goal. Further, toégn
client agents. The problem of providing wireless commun@ssume the knowledge of parameters based on the structure
cation coverage amongst multi-robot systems requireg tigfhd material composition of the environment.
feedback between spatial positioning of the robots andsgns Our objective is to i) present a novel method to capture
of the communication quality. The richer the information othe spatial variation of wireless signals in the local eomir
signal quality, the more effective the control. A key reatibn mentwithoutsampling along counter-productive directions, or
makes this problem very challenging: Robotic tasks leveragequiring information about the environment or the chaisnel
mobility in Euclidean space and thus require knowledge distributions and ii) derive a control formulation that miains
how position effects communication. However, the relagldp the structural (quadratic) simplicity allowed by the Edelan
of signal quality with spatial position is notoriously hara disk model while accounting for wireless channel feedback.



from the data and show that this metric can accurately and
automatically identify the three scenarios of strong ®ngl
peak, multi-peak, or noisy peak in actual experimental .data
| Attenuated Signal Our control algorithm leverages the gradient directiond an
their associated confidences to automatically tune thedspee
4 of the robot, improving both stability and convergence time
Obstacle Finally, our controller optimizes communication with niple
robots by choosing a direction of movement corresponding
to a strong signal that strikes trade-offs between comgetin
Legend demands. . . . . .
B Client Agent The result of a tight integration between our wireless digna
@~Robot Router @ quality mapping and positional controller yields algomith for
o 2. Schematic drawing of a t nal swenath profildtia local router placements that do not rely on environment-depdnden
I 2 esehematc drawing of s tue sina stength profietie 9% parameters, obstacle maps, or even client positions. Térmlbv
strength. solution presented is adaptive to variable communicatiai-q
ity demands by the clients, as well as changes in the wireless
channels due to natural fluctuations or a dynamic envirommen
First’ we introduce an innovative approach for mapping We Imp|ement our methOd N a mu|tl-r0b0t testbed that haS

communication quality to robot placement. We calculate /0 robotic routers serving three robotic clients. We catdu
mapping between a robot's current position and the sigri#f experiments in different indoor environments without
strength that it receives aloreich spatial directionfor every Providing the robotic controller the environment map or the
wireless link with other robots (see Figure 2). This is iflients’ positions. We observe the following: 1) Our system
contrast to existing methods [Fink et al., 2012; Yan arPnsistently positions the robotic routers to satisfy thieotic
Mostofi, 2013a], which compute an aggregate signal pow@ient demands, while adapting to changes in the environmen
at each position but cannot distinguish the amount of sigr@{ld fluctuations in the wireless channels; 2) Compared to the
power received from each spatial direction. Our approaélisk model [Cortes et al., 2004; Jadbabaie et al., 2003] and
combines the best attributes of both the Euclidean disk inodiée stochastic approach [Le Ny et al., 2012; Spall, 2000pund
and the stochastic sampling methods: Like the disk modilentical settings, our system converges to accuratelgfgat
we can compute our mapping without knowledge of th&€ communication demands, unlike the disk model, while
environment and its obstacles, or a model of the channet@nificantly out-performing the stochastic method in termf
distribution. Like the stochastic methods, our approaoksusmpirical convergence rate (see Fig. 15 in Sec. VI-E).
feedback from the actual wireless signals and hence can

help multi-robot systems satisfy their desired commuicat A Contributions

demands in a real-world implementation. A naive approach to . . )
achieve this would be to mount directional antennas atop t g/Ve present a method to enable a rObOt'.C receiver to find
routers; but these antennas are bulky and prohibitive fallsm € profile of S|gnal strength across spatial directions fo.r
agile platforms [Networks, 2014]. Instead, we present aeho ach sender of interest. To this end, we perform synthetic

algorithm based on Synthetic Aperture Radar (SAR) [Fitcﬁlperture radar (SAR) tecl'_miques using standar_d Wi.'Fi packe_
1988], where a single omnidirectional antenna emulatesc4changed between two independent nodes with single omni-

high-resolution directional antenna. This paper preséims directional antennas. We derive a quantitative metric, the

first such algorithm for implementing SAR using oﬁ-the-tﬁheconﬁdeme’ that can accurately and automatically identify

wireless cards in a non-radar setting, a challenging tastesi Ithi p_lr_er.\]_sence (.)J multllpatgl or ?0|se tfor ?actr;] comnt1ur|i|cat|on
these devices are not intended for this purpose. INk. This provides vajuable information to the controlier

Second, we construct an optimization for positioning gauging the effectiveness of each recommended direction of

team of robot routers to provide communication coverage o@noze?ﬁnt;?o'??ggr'llg e(:r(;mgupr:gaélF:gc?gﬁg[lyé'V\fa;jem\r/gi'op
client vehicles using the directional information proudey ptimizal verag rect '9 :

our mapping. Beig abie to measure te profle of sgnd[4 "eY Sonidnces, lopostion abotc routers o st
strength across spatial directions in real-time yields ahmu 9 ( P y )

more capable controller. For example, the direction that in\q}irgitrzvg::;aclﬁczrr]%tr)loiz Cllz'?nn;ﬁ' nge r«':cl)(\i/?dp:gg t?er?gtg;;i?in
proves signal strength the most is immediately attainaiole f ges. Y P ggreg

these profiles (see Figure 2 for a schematic interpretatiogfta to show that our method outperforms existing Euclidean

Therefore as a direct consequence, the controller hassac k- or Stochastic sampllng_ methods both in convergence
to the gradient of communication quality for each of it Ime (3.4x faster) and variability of performance x4smaller

“links”, or neighbors to which it communicates. While in thevarlance).

favorable scenario, there is a single recommended directio

of movement, in real-world implementations it is possible Il. RELATED WORK

for there to be multiple such directions due to multipath Related work falls under two broad categories.
or even noise that may be affecting the wireless link. This

information is important for gauging the confidence with ) o
which the controller can improve signal quality by naviggti A Multi-Robot Coordination

the robot along any of the recommended directions. To thisOur work is related to past papers on multi-robot coordina-
end, we present a method for computing a confidence mettien to achieve a collaborative task while supporting sfeci
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communication demands [Fink et al., 2012; Le Ny et al., 201B; Angle of Arrival Systems
Malmirchegini and Mostofi, 2012; Yan and Mostofi, 2013a]. our method builds upon a rich body of literature in wireless

Past work on this topic fall under two classes of approachef%tworking that estimates actual angle-of-arrival of eafcihe
reflected paths of a signal at a receiving device. Past wask ha
Euclidean Disk Model: The first class employs Euclidean€MPployed two classes of hardware to estimate angle-ofedrri
disk assumptions where signal quality is assumed to be demtenna Arrays: Past literature has leveraged arrays of
terministic and mapped perfectly to the Euclidean distane@tennas to estimate angle-of-arrival for localizationsfl
between the communication nodes. A Euclidean metric allows al., 2013; Wang and Katabi, 2013; Xiong and Jamieson,
for quadratic cost for the edges of the network and enable813] and tracking [Pham and Sadler, 1997]. These use
a geometric treatment of an otherwise complex problemtationary multi-antenna receivers to locate the trariemitith
In reality, signal strength suffers from large variationseo sub-meter accuracy. Unfortunate for the robotics commgunit
small displacements [Goldsmith, 2005; Lindhe et al., 200any of these techniques require bulky, specialized halwa
that these models simply do not capture. Yet, the simpliciuch as customized software radios, and are thus difficult to
afforded by these models has led to significant contribstioplace on small, agile, mobile platforms that are ubiquitfmurs
including i) multi-agent coordination for coverage and Koc robotics applications.

ing [Martinez et al., 2007; Schuresko and Cortes, 2009], i

. ¢ i : - " ?d/nthetic Aperture Radar: Understanding how to attain
assignment of routers to clients for attaining a prescribggis girectional information using a moving platform is the

level of connectivity [Feldman et al., 2013; Gil et al., 2012 00t of Synthetic Aperture Radar (SAR) [Fitch, 1988] FSA

or throughput [Craparo et al., 2011], and iii) connectivity5vs even a single-antenna mounted on a flying aircraft or

maintenance .based o'n gr_aph theoretic approaches [De @enigfqjite to emulate a multi-antenna array. Unfortunatelgst

and Jadbabaie, 2006; Michael et al., 2009]. SAR applications [Fitch, 1988; Wang et al., 2013; Wang and
Katabi, 2013] are geared towards radar-type problems (eg.

Stochastic Sampling Methods: Recently, efforts have fo- imaging, RFID applications) where signals are transmitted

cused on giving the communication quality over each linkrocessed by the same node. Therefore, they cannot be used

in the network a more realistic treatment by sampling tHe analyze the direction of arrival of the signal from a disti

signal strength and building closed-loop controllers ggitis transmitter (e.g. Wi-Fi devices).

feedback. Such stochastic sampling methods either suppleFor an adaptive communication network of small router

ment theoretical models for signal strength with a stodéhastobots, we need a light-weight, single-antenna systemctirat

component based on the collected samples [Lindhe et &grform SAR using two-way transmissions (unlike radar) on

2007; Malmirchegini and Mostofi, 2012], or, use the collecteoff-the-shelf Wi-Fi devices. In this regard, we develop ateyn

samples to design stochastic gradient controllers [Le NKat builds upon synthetic aperture radar meant for robotic

et al., 2012; Twigg et al., 2013]. These papers have studigiters and clients equipped with standard Wi-Fi cards.

stochastic sampling patterns for i) acquiring sufficiemgmnsi

strength (RSS) samples [Lindhe et al., 2007; Lindhé amsl Organization

Johansson, 2010], ii) co-optimizing communication gyalit

and other higher level tasks like motion planning or messal o P -
routing [Fink et al., 2013; Yan and Mostofi, 2013b], iii) use foblem for achieving communication coverage for clients

router mobility to escape “deep fades” or null points Wherglth heterogeneous demands. The following sections d®scri

i it ach component of our solution to the problem:

connectivity may be lost [Vieira et al., 2013] or to map . . : .
out the signal strength and resulting connectivity regiohs ° S_ecthn M denves_ a new m_ethod for measuring rich
the environment [Twigg et al., 2013]. Unfortunately these d|rec_t|onal information from \_N|reless (_:ha_nnel feedl_)ack.
works necessitate at least one of the following prohibitive * Section V presents an algorithm for finding a configura-
requirements: i) motion of the routers along counter-podiga tion qf routers thabalancesthe net\_/vork, 1.€. Maximizes
paths to collect sufficient RSS samples, ii) assumptions of the S|gn_al quality of the weakest I|r!k for a fair r}etwo_rk.
a known environment map, static surroundings, and known® N Section V-B we derive a confidence metric using
positions of communicating agents, or iii) previously aiced channel feedback, that captures the effects of multipath

signal strength maps. _ and nois_e. _
Finally, Section VI experimentally evaluates our approach

In comparison to these papers, we introduce a system tAgpinst the disk model and stochastic sampling methods.

captures the magnitude of the signal arriving from différen

directions as opposed to only its total magnitude at a particular Ill. PROBLEM STATEMENT

position. This allows us to combine the best of both the disk We consider a mobile network with two classes of members,
model and stochastic sampling methods: Like the disk modeltobotic clients (orclient§ whose positions are not controlled,
we do not require prior knowledge of the environment angnd a team ok robotic routers whose mobility we control.
its obstacles, or a model of channel's distribution. Like thOur goal is to position the robotic routers to provide adagpti
stochastic methods, our approach accurately captureslacwireless communication coverage to the clients, whilevallo
signal characteristics and hence can help multi-roboesyst ing variable communication quality demands for all clients
satisfy their desired communication demands in real-worthd where exact client positions are unknown. For each
environments. Figure 3 provides an illustrative example afientj € [n]={1,...,n}, we define demanded communication
how our system out-performs the Euclidean disk model amgalityg; >0, and achieved communication qualgy to each
stochastic sampling, particularly in the presence of absta routeri (wherei € [k]), both expressed in terms &ffective

Section Il presents a formulation of the router placement



Our Method Measures Local Euclidean Assumption Ignores Sampling Methods Gather Signal
Signal Strength Profile and Uses Signal Strength Strength Measurements at
this for Control Decision 2 Discrete Locations

Move towards best
sampled direction

Move to minimize Euc.
distance to client

(c)

Fig. 3. Compares our method against the Euclidean disk nadkhl stochastic sampling. The figures depict the actuadrdoiue) and client (red) separated
by an obstacle (black). The black lines indicate the difiengaths of the signal. (a) Our method estimates the actgabkipower arriving from different
angular directions, much like a high-resolution directibantenna would. This provides a sharpened peak in thetidineof maximum signal strength. (b)
The Euclidean Disk model guides the router along the shoBEaslidean path, which is greatly attenuated by the ohstdc) Stochastic methods measure
the signal strength by moving the router and sampling abuaripositions (blue circles). The signal strength does mof significantly between locations
due to the lack of spatial resolution, ie. at each sampletitmtahe signal strength is a combination of signals argvirom all angular directions. This leads
to much less discernible peaks when contrasted with (a)e(Mwit the polar plot of signal power, shown here as dottezsJihave peaks in the same angular
directions as our method though less sharp ). This methodeguihe router towards the direction of the best sample,hwbften may not be the actual
direction of maximum signal strength, as shown.

Signal to Noise RatidESNR) that has a direct mapping tochannel measurements, and ii) a cost
rate in Mb/s [Halperin et al., 2016] Additionally, let every

client j be given an importance; > 0. We allow all quantities d(ci, G, wij, fij) >0 2
in this section (ieq;, pij, aj) to be time dependent though we o ) o
omit this dependency henceforth for simplicity. that is independent of the environment and satisfies the fol-

We define the notion ofervice discrepancfor each pair lowing properties:
of robots(i, j) to be the difference between the demanded andProperty 1: All link costs g are quadratic
achieved communication quality scaled by the importance ofProperty 2: Minimization of a link costg™over ¢; directly
the client. relates to increasing signal quality for clignand optimization

over all link costsg~allows trade-offs between clients with
wij = max(aj(qj — pij)/dj,0) (1) competing demands

Physically, this is the fraction of the client's communioat Property 3: The link costsg™are independent of client
demand that remains to be satisfied, scaledrpyDenote by positionsp;
¢ € RY the position of theith robot router and by;j € RY Given a known numbek of routers, client demandg, and
the position of thejth client andG; = {cyy,...,ckt} is the the mappingfij for all links in the network, position routers
set of all router positions at time In this paper we give to minimize the worst-case link. Specifically, we aim to find a
explicit treatment to the case for= 2 although all concepts position for the routers that minimizes the maximum service
are extensible tal = 3. discrepancy by solving fo€ in the following problem:

A. Problem Formulation

Given a costg in terms of signal quality, communication
demands, and agent positions, we wish to position eachioobot . . . S
router to minimize the largest discrepancy of service betwe Ntuitively, the solution to this optimization problem fars
routers and clients. However, the true form of this functioff @il network. Specifically, the solution aims to minineiz

g has an intricate dependence on the position of the cliefi® “Worst service discrepancy” among clients in the nekyor

router, and the environment. Thus an inherent challenge @ &Ny Point in time. The worst service discrepancy is given

solving this problem is approximating the influence of Smatimathematlcally by the b_raclggted expression in Equation .(3)
positioning on communication quality that generalizesasr a_nd can be understood |ntg|t|vely as follows: 1) The service
environments. Our goal is to 1) findj : [5%, %] - R (a discrepancy of a router-client link captures the d|ffe|§9nc’

relation capturing directional information about the sign between the meaSL_Jred_ quahty_ of the link "?md the client's
quality between and j), and an approximatiog 6f g, which dgmar_lded communication quality (see Equatl_orj ). 2) Egch
is a cost, characterizing the anticipated communicatiaiyu client is served by a router that offers the minimum service

for the router-client paifi, j) at a proposed router positian discrepancy to it, at any given time (the innermost min over

and 2) use this cost to optimize router positions to minimiZeln Equation (3) above). 3) The worst service discrepancy,

the service discrepancy to each client. Formally is the maximum service discrepancy among all clients to
Problem 1: Find i) a mappingf;; : [, 7] — R t'hat maps their chosen routers in the network (the inner max oyén

spatial direction to wireless signal strength directly nfro Eiglcjz?enp()):nS))rﬁglyogﬁzgggtz;thznglI;e)ggn\tmitr? titrt:se V\(IjoerS:a r?girr\llécgn

. the configuration of the routers. The optimal configuration
ESNR is a continuous signal quality measure that has a enad€o of the routers (g|ven by the outer arg min term) is therefore

mapping to the maximum data rate supported by a link [Hatpetial., 2010]. . . e L

We work with ESNR values rather than rates since the latterdéscretized the conflguratlpn that best satisfies communication demands

(non-continuous). across the entire network.

Crr = argmin{maxming(c.Cw. i)} (3)



B. Problem Scope power over short distances are likely to be marred by noise

We specify that our aim in this paper is to position mobil@" phenomena that affec_t the signal strength locally suc_h as
routers to establish a communication network whose link¢ep fades [Tse and Viswanath, 2005] (due to reflections
have high enough ESNR to support given client commur@f the §|gnal at the receiver interfering constructlve_ly or
cation demandsgg. In other words, we are interested irdestructively). To obtain reliable measurements of charige
providing theinfrastructureto support the requested qualitythe signal power, the robot has to move significantly along
of communication. This is in contrast to solving for routing?otentially counter-productive paths. _
protocols that would optimize the communication traffic ove 10 @ddress this limitation, our approach relies on the cenn
the infrastructure to ensure successful message passing fPhase as opposed to the power. Specifically, at any position
a sending node to a receiving node. While this is anothée wireless channel can be expressed as a complex number
common metric of connectivity, it is often times treated ai(t) [Rahul et al., 2012]. The magnitude of this complex
a layer on top of an existing communication infrastructurgh@nnel captures the signal power (more accurately, itarsqu
and is an out-of-scope problem with a vast body of dedicaté@Pt)- The phase of the channel has traditionally been eghor
literature (See [Fink et al., 2010] for an example of routing PY robotic systems. However, the phase changes rapidly with
robotic networks). Finally, we assume throughout thateput motion. For Wi-Fi signals at a frequency of 5 GHz, the phase
router links are high capacity and that router-client liske ©f the channel rotates by every 3 cm. This far exceeds any
the limiting factor that must be optimized. rotation due to noise variability. Thus, by measuring ctesin

We dedicate the next sections of this paper to 1) Developifi§ cOmplex numbers and tracking changes in its phase as
a method that compute; as the profile of signal qualities the robot moves, we reliably estimate signal variation with
along each directio® for each link(i, j) found directly from much_exploranon. In the next section, we explain how to use a
channel measurements; and 2) Developing an optimizatiighnique called synthetic aperture radar (SAR) to extreet
framework that utilizes this directional information torfiae  "€Ceived signal strength along each direction from changes
trade-offs between competing client demands, and position channel phase. Note that SAR does not need exploration in

routers to jointly minimize the maximum service discreganc"‘" directions; the robot can move along its path withoutaxt
across links in the network. exploration or sampling. SAR uses the resulting variations

channel phase over distances of a few centimeters taffigl

IV. DIRECTIONAL POWER PROFILE OF AWIRELESSLINK

In this section, we develop the first component of th'g" Synthetic Aperture Radar (SAR)
solution of Problem 1; namely, we derive a method to caleulat Synthetic Aperture Radar (SAR) enables a single antenna
f(8), the mapping to capture the signal strength from a robofigounted on a mobile device to estimate the strength of the
client to its router along each directigh where this mapping Signal received along every spatial direction. As expldine
can be updated often, roughly once every 6cm of mation. in Section 1I-B, SAR employs a single moving antenna to

Before we explain how we compufe8), we describe this emulate a multi-antenna array and compute the directional
function to help understand what it captures. Assume we ha@file of signal strengthf(6) (See Figure 5). Therefore,
a robotic client and router, where the router moves alofge can leverage the natural motion of a robotic router to
some trajectory. We will define the directi¢hrelative to the implement SAR and measurg(6) for each of its robotic
tangent to the router’s trajectory at each point. Consitler tclients using a single omni-directional antenna. To do so,
scenario in Fig.4(a), where the robotic client is in linesight the robotic router measures the chanhgl) from its client
at —50° relative to the robotic router, which is moving alongis it moves along any straight line. The straight line path
the horizontal axis. In this case, one would expé() to Over which the router acquires daFa is on the or_der of_ half
have a single dominant peak a50°, as shown in Fig.4(b). @ wavelength (centimeters); assuming the source is staion
Now consider the more complex scenario in Fig.4(c), wheg®d the router either moves at a known constant velocity or
the environment has some obstacles and one of these olsstdtgeposition is known for the traversal time window, then a
obstructs the line-of-sight path between the router and Ryfficient amount of usable channel data can be collected. Th
client. In this case,f(8) would show two dominant peaksmeans every few centimeters the router can have an updated
at 200 and —30° that correspond to the two reflected pathgieasurement of (6), for all values off.
from surrounding obstacles, as shown in Fig.4(d). Specifically, Let h(t) for t € {to,...,tm} be the m+

Advantage over Sampling Methods: One may estimate 1 most recent channel measurements, c.or.r_espond[n.g o
f(6) by sampling the signal power similar to stochastiEhed {Obgtt whozet d|sg[2;ement ftromthns |n|t|_al dpo§|t|or|1
techniques [Le Ny et al., 2012; Spall, 2000; Yan and Mostoﬁst (Ot)ﬁ (t),... (mt)'. Ldi t(_:ofr]npu es. € receved signa
2013a]. In this case, one has to move the router along each 9th across spatial directio &) as:
direction, compute the power in all these new positiongirala 214 (t)co8
to the first, and draw the profilé(8). Unfortunately, this f(6) = ‘Zh(t)e I3
approach leads to much wasted exploration. This is bechase t

signal power does not change reliably when the robot moveghereA is the wavelength of the Wi-Fi signal. The analysis

For example, if the robot moves for 5 or 10 centimeters, @f this standard SAR equation may be found in [Stoica and

is very likely that the resulting change in the signal powayioses, 2005]. At a high level, the terras! 390 in Eqn. 4

is below the variability in noise. Hence, measurements gfoject the channelk(t) along the direction of intered by
compensating for incremental phase rotations introduged b

2For simplicity, we denote; (8) as f(6) as we consider only the single the robot’s movement to any path of the signal arriving along
link between robotic router and clientj for the rest of this section. .

2

: (4)
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Fig. 4. (a)/(c) LOS and NLOS topologies annotated with digrehs. (b)/(d)f(6) of the signal in LOS and NLOS. (e) Shows hdWis defined in SAR.
(f) Showsh(tj), the forward channel from transmitter to receiver dd;), the reverse channel from receiver to transmitter at ime
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Fitch, 1988; Wang and Katabi, 2013] are for radar-like ap-
plications, where a single device transmits a radar signdl a
receives its reflections off an imaged object, e.g., an aigl
Client agent However, in our scenario the transmitter and receiver ane-co
pletely independent wireless devices (i.e., the robotient!
and router, respectively). This means that the transnibteot
and the receiver robot have different frequency oscilkator
In practice, there is always a small difference between the
frequency of two independent oscillators. Unfortunateiyen

: a small offsetA¢ in the frequency of the oscillators introduces
TSmO A WaSochmpom ot a time varying phase to the wireless channel.
router moves alongany straight-line path ) .
o arilate directionl Btinnasiy For instance, lel(tp), h(t1), ..., h(tm) be the actual wireless
channel from the robotic client to the robotic router at time
to,t1,...,tm. The channel observed by the router from its client
h(to), h(t1), ..., h(tm) are given by:
Fig. 5. Schematic representation of our method for emgadirdirectional ~

antenna array with a single omni-directional antenna lagidcto a mobile h(to) = h(to), h(ty) = h(ty)e 2@ilta-to)
off-the-shelf platform.

Our off-the-shelf platform Sketch of our method concept

)

A(tm) = h(tm)e 2™1(tn"0)  (5)

) ) Hence, the phase of the channels are corrupted by time-

Note that SAR finds the signal power from every anflle yarying values due to the frequency offset between the trans
simply by measuring the channels, without any prior tuningtter and the receiver. Fortunately, we can correct far tffi-
to the given direction. Of course, the resolution at whitks  set using the well-known concept of channel reciprocityH&a
available depends on the number of channel measurementstl@|., 2012]. Specifically, left (t) denote the reverse channel
fact, moving by around a wavelength (about 6 cm) is sufficieflom the robotic router to its client, as shown in Fig. 4(f).
to measure the full profile of (0). Reciprocity states that the ratio of the forward and reverse

Therefore, SAR is a natural choice for autonomous I'Obo%anneb Stays constant over time, Subject to frequensytoff
networks since ?t exploits thg mobility of the robots to cart® je. hr (t) = yh(t), wherey is constant. Further, the frequency
f(6). Further, it only requires the robot to move along @ffset in the reverse directialy; is negative of the offset in the

small straight line e}longd_any.arbitrary directic()jn, (‘dehl doggrward direction, i.eA} = —A;. Thus, the observed reverse
not require it to explore directions counter-productivetie -1ty B (t B (t.) are aiven by:
overall coordination goal. Note that SAR requires only thé (o), '(ta), - ' (tm) 9 y:

relative position of the robotic routed(t) and both the R (to) = h'(to), R (t1) = h' (t)e@@rio)
magnitude and phase of the chanhl). It does not require i W ()2t (tm—to)
the topology of the environment nor the exact location of the (tm) = h'(tm) - (6

transmitter. Multiplying Egn. 5 and 6 and usinf (t) = yh(t), we have
h(t)A"(t) = h(t)h"(t) = yh(t)2 = h(t) = y/h(t)A"(t)/y. Hence
B. Algorithm for Performing SAR on Independent Wirelesge re-write Eqn. 4 as:

Devices

A key challenge in adapting SAR to multi-robot systems f(0) = ‘Z\/ﬁ(t)ﬁf(t)eja"d(t)cose
is that all past SAR-based solutions [Adib and Katabi, 2013;

2

; ()




where the constant scalingis dropped for simplicity. Hence,

to measure (0), the router and client simply need to measure . o

their channe(ls)at both ends. In practice, the router andtclie Gi1=arg rg'n{mjaxg‘e'gg(ci’c“wii i) (8)
transmit back-to-back packets with a small gag: 200us to
obtainh'(t+ &) andh(t), respectively. The router collects thes : . X
values and approximatét)n' (t) ash(t)hf (t+ 8)e 12210, The SETVICE discrepancies. . o
router computes this 10 times per second (an overhead of jusPt" focus in this section is to find communication link
0.1%) and obtain® with a resolution of 1. Algorithm 1 costsg that have the three desirable properties 1, 2, 3 from

summarizes our above approach to compute the signal sihren% Ctéor;ril(i;/v how to capitalize the rich spatial information
profile f;j(6) for a general wireless linki, j). P P

We note the following important points about Algorithm 1provided byfij (6), to derive a cosg for each link possessing

1) It requires as input the relative displacement of the tob}pe_se_three desired quaI|t|es_. The resulting cost can teen b
router d(t) from its initial position att — 0. In particular, optimized to complete our objective of robot router placatne

if the robot moves at a known constant velocityfor the that best satisfies the communication demands of the clients

duration of SAR (i.e., corresponding to a total displaceimen
of few cm), the algorithm only requires this velocity A. A Generalized Distance Metric

since it can readily compute the relative displacements aswe turn attention to the derivation of a quadratic cost
d(t) = vt. 2) While the algorithm requires the client to b&yhose minimization will improve signal strength. We derive
static, this requirement is only necessary for the duratat 5 generalized distance that encodes the direction of steepe
the router performs SAR (i.e., corresponding to a totalebutdescent and the confidence around this direction. We begin
displacement of few cm). We note that i) the assumptiqgith the case where all positions are known and extend to the
of static channels is also necessary for stochastic 539"P'i5bsition independent case in Section V-E.
based methods since the channels and (thus sampled signgonsider a single router-client pdir j) located at positions
strengths) change otherwise and must be re-sampled anddj)p;). A Euclidean disk model approach similarly assigns
the time scales are largely different between our proposg@tance, in the Euclidean sense, to be the cost of each
method and existing sampling methods; specifically, bezaussmmunication link in the network. However, this disk model
our method allows for the attainment of rich channel datgproach does not usk; () at all. Instead, it relates im-
after a comparatively short measurement period, changespidving communication quality between the router and ¢lien
the environment can be quickly adapted to. to reducing the Euclidean distance between them, i.e. edges
_In the following section, we explain how we leverage the the network take the cog:= dist(pj,c). The appeal of
signal strength profile;j(6) on each link(i, j) output by such a cost is in its simple quadratic form that can be easily
Algorithm 1 to control the position of multiple robotic r@rs  optimized. Unfortunately, the cost is oblivious to the attu
to meet the clients’ communication demands. wireless channel at the client and fails to capture the otirre
service discrepancy which can be large even at small distanc
Algorithm 1: Algorithm for finding directional signal (say, due to obstacles).
strength profile for a wireless link, j) Our system avoids this pitfall, while retaining simpligity
input : Wireless Channels on the forward lifig (t), b_y Incorporating realft_lme channel feedbac_k into a ge'@’d'
and reverse Iinlhﬁi(t) and robotic router's dlstan_ce m?tnc. Irltwtlvely, we employ a distance methatt
displacement from its initial positiod (t) at effectl_vely warps” space so that the shortest d|s'gance for
timest —to, ..., tm on link (i, j) ena_bllng _better communication between two robots is not the
0 m
output: A vector of directional signal strength values s;ragjht In;]e g?‘th bEtWE]fen them, bgt ralther thehpfath alr(])ng
fij € R for | discrete directionality angles i@, 1 the Eimax, ft_ ee |rer<]:t|orgjo maX|m;Jm.S|gnr?1_ s(jtrengt rom the
L for t€ {to,....tm} do mappingfij (). The advantage of using this distance metric as
compared to a Euclidean distance metric becomes clear when

é{VhereC[ are current router positions ang; are the current

2 ‘ hij (t) < \/ hij (t)hﬁi (t); an attenuating obstacle blocks the straight line commtinica
3 end path as shown in Figure 6.
4 for 6 € {0,%, l{_iTl, ..., do Importantly_, the recomme_nded headi_ng directign,, may

. 2 i2ng o |2 exhibit variation due to noise or multipath on the wireless
5 ‘ fij (6) « ‘Zt hij(t)e " A ™ ‘ link. To account for these effects, while not over-fitting to
6 end noise, we leverage the entir signal profile to design a

confidencametric gj; in the recommended heading direction.
The exact form of the confidence metric is derived in the
following section. The purpose of this confidence metric is
to incorporate second-order information frdip that captures

V. COMMUNICATION COVERAGE CONTROLLER the presence of noise, or multipath, and can be used to alter

In this section, we target the problem of placing a teathe behavior of the controller accordingly (see Section)V-B

of mobile router vehicles at locations such that they previdBy using aMahalanobisdistance metric for assigning costs
wireless coverage to client vehicles, each with differemhe to each communication edge in the network, we can encode
munication demands. Specifically, using as input the chlani®th the recommended heading direction and its confidence.
feedbackf;; (6) derived in the previous section, we aim to findrhe mathematical definition of the Mahalanobis distance is:
a functiong'that can be optimized over router positions such Definition 1 (Mahalanobis Distance)Given a positive def-
that: inite matrixM € R9%4, a vectorx € RY, and a vectoy € RY,
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Fig. 6. Schematic depiction of the use of channel feedbackdsigning cost ) [n

to communication links in the network where edge cost is shew circular ' ’

contour lines. On the left, a Euclidean distance metricga®sl lowest cost : .

to the straight-line direction, whereas using the Mahaidistance (right) (c) Mahalanobis (High Conf)

skews the distance contours to identify the direction algyy, as the lowest . . .

cost. The amount of skew in the contour lines is determinethbyconfidence Fig. 9. These plots show the level sets of a Euclidean distéumction and
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metric derived in Section V-B. a Mahalanobis distance function.
the Mahalanobis Distance betwermndy is: the amount signal strength (mass under ti€6) curve)
_ that is concentrated under the peak directlaay versus the
disty (x,y) = 1/ (x=y)TM(x—y) (9)  remaining parts of the curve. A ratio @f;; /onij = 1 would

gigan that thef;; (8) plot does not provide evidence that the
max directionfmax is of much significance and that indeed the
plot is entirely noise. On the other hand a rabiqj/GNij <1
indicates that a significant portion of the signal strengttve

in fjj (@) is concentrated around the m&kax and thus this

Euclidean distance is a special case of the Mahalano
distance (see Fig. 9(a)) witM =1 wherel is the identity
matrix of appropriate dimension.

Here, M = QAQ' is a positive-definite matrix, wher®
consists of orthogonal eigen-vectors afd contains their ' . s : .
corresponding eigen-values. By a careful constructiorhef tpeak is considered to ha_lve high confidence. Last_ly, thc_ecas
matrix M, we can encode channel feedback as a quadra{Bere oti;/onij > 1 indicates the presence of high signal
Mahalanobis distance cost for each communication link frength in other parts of thé;;(6) curve other than the
the network. This construction requires both the recomragnd®max direction which suggests the presence of multipath. These
descent directiog, , from f;j(6), and the confidence metricthree scenarios are demonstrated empirically in Figureé&revh

aij that is also computed frorfy; (6) in the following section. three actualfi; (6) plots are automatically identified as being
single peak “high confidence”, multiple peak “noise”, andmu

. . tiple peak “multipath” scenarios respectively, by compgti

B. Confidence Metric from Channel Feedback the ratioai; for each plot. The figure demonstrates a graphic
We design a parametex; that is derived from the mappingdepiction of this ratio where areas of tHg(6) plot above

fij (0) and that we refer to as@nfidencen the recommended and below the uniform variance line determine the confidence

heading directiorvg, . Intuitively, oj; captures the“variance” value (compare with Equations in (10)).

of fij(6) around6nax. We definedij mathematically as the e define these three cases below for reference:

ratio of two quantitiespy;; and oy;;. We define Definition 2 (Confidence)Confidence in the direction of
highest signal strengtBmax. W% define three cases captured
_ i O — -
EF = ; ) f(0) (10) by our confidence metricj; o
el-2-2} ( « High confidence peak:aij < 1
f(0) « Noise: gij ~ 1
_ _ 2 ij
orj= > (0 fma)" (D Multipath: o > 1
6e{—7.,..5} . . . -
F See Figure 7 for examples of these regions identified automat
2 . .
ONij = Z (8 — Bmax) T (12) ically from actual experimental data.
0e{-3,..5} Experimental results in the basement of the Stata Center
Otjj building on the Massachusetts Institute of Technology aznp
0ij = Wij (13)  show that the regions of high confidence, noise, and mulftipat

defined above can be identified automatically from data using
whereL is the total number 08 values that make up the plotthe confidence metric from Eq. (13) (see Figure 8a). As ex-
fij(6). The termoy;; is the variance of the plofi; around pected, areas of the environment with no significant ocehssi

its maximume@ = 6max and oy;; is a normalization factor (it to the client agent show strong evidence of high confidence
is the variance aroun@imax in the case that the mass undeprofiles. Areas such as corridors with potential occlusions
the fij(0) curve was distributed evenly over tt values). due to walls and corners show a much higher incidence of
The ratio of these two quantitiesrfij /Onij, characterizes multipath, about 90% in the worst case.



‘Signai Strength vs Relaive Heading Angle

Direction of Max
Signal Strength

o Signal Strengih vs Reltive Heading Angle Signal Strangth vs. Relative Heading Angle

Signal Strength Direction of Max
Signal Strength

0.008

0.008

Normalzed Signal Srengtn

Nomalized Signal Srengh

0.004

Normalized Signal trengtn

0.002

o w &

Relaive Hesding Angl ) (de0) oo

I
Relative Heading Angle 0 (deg)

Relative Heading Angle 0 (deg)

Varisnce around Directon of Max Sgnal Srength o, Variance around Direction of Max Signal Strength ,_ Variance around Difection of Max Signal trength ),

od \ High Conf Case: o Low Con{f; (Noise) Case: Multipath Case:
o T - Ty
- ! - o o

[}

| 1solated

| multipath peaks
identified

automatically

Variance (deg’)
8

I
o ® & H_ w0 N k@ & W o ® o % B ® W o ® w CI )
Reative Heading Angle 0 (deg)

LI ]
Relative Heading Angle 0 (deg)

D0 0
Relative Heading Angle 0 (deg)

Fig. 7. These plots show directional signal strength pfifem actual experiments. They demonstrate how the cordfideretric identifies cases of high
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Gradient Field using Gradient Direction and
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Fig. 8. Figure (a) shows data collected for a one-link systémne router and one client where the client is stationarthattop right corner of a basement
environment and a mobile router is driven in a lawn mowergpatthroughout the environment through line-of-sight amah-fine-of-sight regions. Each
colored data point represents an acquired directionakbigiofile (two example profiles are shown) and the color ofdhta point is the result of automatic
mode detection from the data using the confidence metric figm(13) where red=noise, yellow=multipath, and greenkhignfidence peak. In (b) the
resulting edge cost contours ( Equation (14)) and actuara@ocommand at each point in the environment is shown. Cenfid values have a direct effect
on velocity (as indicated by arrow length) where confideméations are pursued more aggressively.

An important observation from the data in Figure 8a is thaff M;j such that setting the edge cogtér6m Equation (8) to
even in line-of-sight regions of the environment (relattee §:= dist,aij (pi,cj) satisfies Properties 1-3.

the position of the client) there may be significant multipat The direction along which the signal strength is maximum,

present due to reflections from nearby concrete walls apd  is characterized by a peak in thg (6) plot and we

this may cause the direction profile to have peaks in headiggfine Vg . to be the unit vector along this recommended
directions that are non-intuitive. Therefore this datagasis heading moellixrectionemax. Using this direction alone does not
that metrics relying solely on the geometry of the environtme yrovide enough information for effective position contfl
including visibility graphs, do not adequately capture¢ben-  the routers however, due to the fact that this direction may
plexities of wireless signal quality in general environit®en  experience corruption due to noise or multipath. In the iprev
) o ] ous section we showed that the presence of multipath or noise
C. Construction of Communication Link Costs in the f;;(0) plot can be identified via the computation of a
Our objective here is to construct the Mahalanobis distancenfidence metriai;. Now, we encode the quantiiy;j into
matrix M;; for each communication link (or edge) in theour controller such thalg,,, directions of high confidence are
network usingfij (6). Specifically, followed more aggressively (larger displacements alorgeh
Problem 2 (Computation of §}): For each communication directions), and the opposite is true &, ,, directions with
link (i, j) in the network wheréec [k] andj € [n], find a head- low confidence. Figure 8b shows the effect of the confidence
ing directionvg,,,, a confidence metrio, and a construction value on the commanded displacements made by the controller
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in an actual implementation. the controller by assigning higher weight to users with éarg
Specifically, for the three categories of; we desire the service discrepancies. To do this, we scale the cost functio

following behaviors for the routers: 1g5; < 1: Indicates a § = disﬁ,,ij(pi,cj) by the square of the discrepanwﬁ to

high confidence ivg,,, due to a sharp peak ifij. The robot optimize yield the network cost:

is moved at higher speeds; 2); ~ 1: Indicates thatfj; is

noisy, so the robot moves slowly; 8); > 1: Indicates thafj rv(PC) = maxmin{vvﬁ- dist,%,,i. (pi,cj)} (14)

has multiple significant peaks owing to multi-path. We study PiEPGEC :

this last case in Sec. V-D., and particularly the opporuitit Second, we highlight the subtle role played by the confidence

presents for maklng trade-offs between.cllents. . gi;. in managing network trade-offs. For instance, consider a
We use the heading direction and confidence to design a cg§é

function g that locally captures the cost of communication i nario with two clients: 1 and 2, where client-1 demands
the spatial domain. We express this cost as a Mahalano%reater communication quality (as specifiedys). Suppose

. o ; Bnt-1 has a highly confidentg,,,, as shown in Fig. 10(a)
distance. The square of the Mahalanobis distance is a ¢ § N ax . I
function (paraboloid) with ellipsoidal level sets (Fig.. 3)e 8 gij < 1). As expected, the robotic router is directed
design our cost by orienting these level sets so that t
direction of steepest descent is alotg,,,. We then skew
the ellipsoidal level sets using the confidengg, so that a
higher confidence translates to a steeper descent which le
to larger router displacements (speed) in the descenttidinsc
with high confidence.

Algorithm 2 provides a calculation of the mati;; from

owards client-1 as shown in Fig. 10(c). In the more inténgst
Eenario in Fig. 10(b), client-1's confidence is poor due to
multiple peaks in the signal profilg; (i.e gi; > 1). Here, the
router strikes a trade-off and services client-2 insteadh#s
y potentially benefit client-1 as well due to the multipath
recognized in client-1'$;; (8) map. The intuition behind this is
simple. Equation 14 above, scales the ellipsoidal costtiomc

. . based on the discrepancieg;’s. However, recall that the
Problem (2). We simply set one of the eigen-vector€oto o LIS .
the heading directiofig, .. To skew the ellipsoid, we set theeII|p30|daI cost function is steep (or shallow) dependimg o

i : . i 5~ whether the confidence is high (or low) and this is attained
ratlo of the e|gen Values’\%”\Z} in A to the confldencerij,. by setting the ratio of eigenvalués/A, of M;; (See Line 3
l.e. A2/A1 = gj, whereA, is the eigen-value correspondingpn algorithm 2). In extremely low confidence scenarios such
to Vg, For example, in Fig. 9(b), wherej; ~ 1 (i.e. poor a5 Figure 10(b), the higher value of discrepancy of client-
confidence), the level sets are nearly circular, leading t01aijs masked by its low value of confidence. Hence, this

shallow descent in cost; while Fig. 9(c), whesg <1 (i.e palances the trade-off in favor of client-2, despite having
high confidence), the level sets are skewed, leading to @ st@&wer discrepancy.

descent in cost alondgg, .. In other words, the cost function

hgs an elega_nt ge_ometri_c interpretation, akin to Euclidean Directon of Max Signal Strength
distance, but is derived directly from channel measurement with Multipath
Further, the cost functiog := dislﬁ,,ij (pi,cj) from Eqgn. 9 is _ o0

guadratic, a desirable property for optimizations.

3000f

4000| 2000
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Algorithm 2: Algorithm for constructingvijj from channel
feedback.
input : Directional signal strength mafy; for every link
(i,]) from Algorithm 1 (a) High Certainty Direction (b) Multipath Directions
output: A matrix M;; for defining communication edge
costs in Equation (8) using Mahalanobis distance
from Problem 2.
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Optimized Router Direction in Favor of

Mobile Router Direction Optimizes Competing Demands
by Recognizing Multiple (Multipath) Directions
I b4

1 Qij < [Vomax: Vomax, ) / /@ set of orthonormal basis
vectors defined using Vgq,

Of:
2 Ojj <_Wlijj /'l confidence in the Vg, direction
3 /\:diaQ[Uiiz_,l]) /'l Construct a diagonal matrix

usi ng cJonfi dence
4 Mij _ Qij/\Qﬁ (c) Client Favored (d) Client Tradeoff Multipath

Fig. 10. Trade-offs between Clientga) — (b) show thefj; (8) map for the
high demand client(c) — (d) show the optimized router direction

D. Network Trade-offs Algorithm 3 demonstrates how the cost in Equation (14) can
In this section, we show how our optimization framebe used to find an updated set of router positions when both
work readily extends to a multi-agent scenario and studjient and router positions are known at the current iterati
the different trade-offs. We show that via the setting of two The optimization in Equation (15) in Algorithm 3 is equiv-
parameters, both set automatically from wireless charatal, d alent to ak-center optimization problem where the distance
the resulting positional controller can be made to greedityetric is a Mahalanobis distance. This is a generalizecerout
optimize one client’s needs or alternatively, strike traffs placement problem similar to that studied in [Gil et al., 2D1
between multiple clients. First, we focus on managing servifor Euclidean distances. Thus the returned solution frois th
discrepancies specified byij. The quantityw;; aims to bias algorithm is the optimal placement of routers correspogdin
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the optimal assignment of routers to clients, given the nkhn respectively. This choice of edge costs satisfy Propetties
feedback at the current iteratian 3. Namely, having a quadratic form, allowing optimization
over the entire network with competing demands, and being
Algorithm 3: Algorithm for router placement with known independent of client positions. As described in Section II
client positions. minimization of these edge costs by Equation (3) results in
the optimization of a network-wide metric, ie. minimizintget
worst-case client service discrepancy.

The resulting optimization framework can be shown to
exhibit other desirable properties relative to the ingtaabus
wireless channels over the network. An important remark
is that we do not make assumptions on how the wireless
channels may change over time, nor do we make assump-
tions on the underlying signal quality function in areas of
the environment that are not currently being sensed by the

input : Directional signal strength maf; (6) for every
link (i, j), demandg;, relative importancexrj > 0
for client j, current quality of each linlo;;, and
current router and client positions
P= {pla"'7pn}1 C= {C17---1Cn}

output: A configuration of optimal router positiorG*,
|C*| =k, given the current channel feedback for
all links in the network.

1 for all links (i, j) in the network withpjj > 0, routers. Unfortunately, this impairs our ability to prowertin
i €[k],j€[n] do desirable controller attributes such as convergencewbatd
2 Wi <—ma><(oq%,0); require some additional assumptions on the signal quality

such as a guarantee that this function is smooth, and can
be strictly improved at every iteration. Such assumptions
would be invalidated by small-scale fading alone [Goldbmit
2005; Lindhe et al., 2007] , in real wireless systems. How-
C*:argmin{maxminwﬁ(pi—cj)TMij(pi—cj)} (15) ever, by relying solely on instantaneous channel feedback,
pjEPGEC we retain the important ability to adapt quickly to changes
return C* in the wireless environment due to dynamic obstacles, for
example. Based on current channel feedback, we highlight ou
controller’'s network-wide properties. The following perties,
and convergence to client demanded rates, are demonstrated
extensively in actual implementations in the next sectibn o
. . ) _ the paper:

A simple relaxation to the cost from the previous section prgperty 4: The assignment of routers to clients is optimal
frees the optimization of using client positions, while mai y5sed on the current feedback over wireless links in the
taining its simple structure and desirable properties l0@e8l otvork.
above. Consider a user specified step-§ize0, that encodes  Thjs can be seen from the observation that Line 8 from
the maximum permissible displacement for each router apgyorithm 4 is the classik-center solution [Feldman et al.,
denoteci; to be the current router position. ngreplfjlce clientn13: Gil et al., 2012] under the Mahalanobis distance metri
positionsp; in Equation (14) with “virtual” positiongy;: A k-center solution will assign clients to their closest roste

;o . In this case “closest” is defined in the signal quality sense

Pij = Gt VWi Ve (18)  \where routers serve the clients to whom their signal streisgt
Intuitively, a client is no longer directly observed buthat greater than the signal strength between any other routbein
estimated to be along the relative directidg,,, and at a network to the same client. An example of this property in an
distance ofyw;; with respect to théth router. As beforevg, ., actual hardware implementation can be seen in Section VI-C-
is the heading direction associated with the maximum streng/I-D where routers choose clients based on the strengths of
signal directionfmax. As a client's demand is better satisfiedheir relative wireless links. N _
by routeri, the service discrepaney; tends to 0 and the client  Property 5: Stability of router positions to solutions that
is perceived as being closer to routeThe observation here satisfy client demands over the network.
is that routers better equipped to service a particulanches Our final cost takes the form:
reflected by thewi; term, will view the client as “closer” and . P _ - .
those routers Witrj1 a weaker signal to the same client willwie m(C) = je?l]f_),(n} E?e'g{d's’%ﬂu (Git + W) Vonao Gi) ) (18)
this client as farther away. This results in a natural methiod ) ) )
assigning client nodes to routers by effectively sensingroBy expanding the squared per-link cost ffistci +
the wireless channels. YWij Vgay Gi) from Eqn. 14:

- (G —cit) " Mij (G —Giy) — 2V\Nij/\e,jvgmax(ci — Cig) + YW Agij
F. Controller for Router Positioning (19)

We now present an algorithm for achieving router positionge note that ags; — 0 the first term in Eqn. (19) favors stable
that minimize the edge cosgsdérived in the previous sections.q|tions where; = ¢, ie. the router reaches a static solution
Particularly we formulatg from Equation (3) to be when all of its assigned clients have zero service discrgpan

In the case where it is not possible to satisfy all client dedsa
§(ci,Cwi, fij) = (pfj —Ci)TMij(pi’j —G) (17) for example_ if there are not eno_ugh routeks_to provide
communication coverage to the clients, Algorithm 4 returns

Where the dependence gfoh C;, wij and fj; are captured the solution with the lowest service discrepancy that isimit
indirectly by pi’j and M;j via Equation (16) and Algorithm 2 a user specified tolerance of optimal. Extensive empirical

3 Mij < result of Algorithm 2;
4 end
5 Compute:

E. A Position-Independent Solution
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validation of this property in actual hardware implemeiotas an iRobot Create robot. We implemented SAR by modifying

is shown in Sections VI-C-VI-E. the iwlwifi driver on Ubuntu 10.04. We used the 802.11 CSI
Property 6: Adaptation of router positions to changes in théool [Halperin et al., 2011] to obtain channel informatidnt
wireless channels and/or client demand. in Eqn. 7). The routers communicated with a central laptop

The Equation (19) shows that for nonzero discrepancy, iemulating the base for control information and human input.
wij # 0, the cost for edgdi,j) is also nonzero. Thus aOur first set of experiments were performed in a room with
change in the client demandg, or in the quality of the a Vicon motion capture system to measure the relative dis-
wireless linkpi; due to moving occlusions or changes in thelacement of the robotic routers. Sec. VII describes resalt
environment, will equally change the weightivg; on the complex indoor environments without motion capture suppor
link (see Equation (1)). If the change in link qualigy; is Our testbed contains obstacles to simulate both linegiftsi
sufficient, ie. ifwjj > 0, the routers following Algorithm 4 and non-line-of-sight scenarios.

will update their positions until a new solution is found ése

Property 5). _Em_p|r|cal validation Qf this property in an it A. Measuring the Direction of Maximum Signal Strength
implementation is demonstrated in Section VI-F.

An algorithm for finding router placements in the most We first provide a microbenchmark to demonstrate that
general case of unknown client positions is presented @l system indeed provides the directifax that results in
Algorithm 4 below. maximum improvement in client service quality. We consider
two representative examples of a single robot router-tpeir
- - - - placed in i) line-of-sight configuration where the strortges
C#%?/\:ghglqeﬁf p’ggﬁg:‘hsm for router placement with un- §igna| path is also the_shortgast Euclidean distance path, an

: i) non-line-of-sight configuration where the shortest kdean
input : Directional signal strength mafy; (6) for every  path between the router and client is obstructed by a cement
link (i, j), demandg;, relative importance; >0  column. These configurations are depicted in Figure 11(a).

for client j, current quality of each linlo;j, We measure the power profiles of signals from the robot
step-sizey > 0, tolerancetol > 0 and current router from different directions using the solution delsed in
router position<C = {cy,...,Cn} Sec. IV. We also compute the average service quality of the
output: A configuration of router position€*, |[C*| =k, client (measured in terms of Effective Signal-to-Noisei®at
and the achieved service discrepancy ESNR) along various spatial directions by iteratively nmayi
13« inf the robot router and exhaustively sampling the signal guali
> while & > tol do along each physical direction, at a total of 1800 sample8 (10
3 for all links (i, j) in the network witho;j > 0, samples, about 1m, along each ten degree arc).
i€[k,je[n] do Results: Fig. 11(b) and (c) plots the power profile obtained
4 Pij < Cit+ YWijVg,,, ; // conpute virtual by our system, as well as the service quality observed when
client j position as perceived by moving along the different spatial directions. We note that
router i direction of maximum signal power measured by our system
Wij < maxaqj qi;_jp”,o); actually leads to maximum increase in service quality irhbot

line-of-sight and non-line-of-sight settings. Notice tthehile

the plots in both Fig. 11(b) and (c) capture similar trendsyt
are not identical. Specifically, the profiles output by owsteyn
isolate signal power arriving from individual spatial ditns,

Mij < result of Algorithm 2;
end
Compute:

o N o O

C* = argmin{maxmin(pj; — c)' M (pij—ci)} (20) and therefore have sharp peaks that are easy to discernsand le
C piePceC prone to error. In contrast, the average service qualithef t
(21)  client varies much more gradually along different direatip
CCr- /1 Update router positions and thgrefore needs to be sampled much more extensively
. for all Iiﬁks (i,0), i€ K.} € [n] do to .obtam accurate trends (for more details, see .Sec: V).
b o ) This demonstrates that our system captures the direction of
10 Wij +— maxa; Jq—jjao)? I'l" Conpute  maximum signal strength with a higher accuracy, and without
updat ed wj; the need for exhaustive exploration, when compared to pure
11 end sampling-based approach.
12 ;
1‘31 end6 = maxg,j) (W) ; /1 Store max g Visualizing the Gradient Field of Signal Strength
15 W* = MiNj ¢ MaX e[ Wi ; In this experiment, we visualize the gradient field of the
16 return C*,w* directions of maximum signal strengfax, on a wireless link.

We consider a single client, serviced by a robot router that i

1) In direct line-of-sight (LOS) as shown in Fig. 12(a). 2) In

possible non-line-of sight (NLOS) scenarios due to obst&cl

VI. EXPERIMENTAL RESULTS WITHMOTION CAPTURE as shown in Fig. 12(b). We drive the robot router in a lawn-
SUPPORT mover pattern and génax at regular intervals.

We evaluated our system on a five-node testbed with tiResults: Fig. 12(a) and 12(b) depict the gradient field with
routers and three clients. Each node was an ASUS 10158 arrows indicatingBmax in LOS and NLOS, respectively.
netbook equipped with an Intel 5300 Wi-Fi card mounted ohhe gradient field in LOS accurately directs the robot router
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Line of Sight Non-Line of Sight following a heading direction based &g, indeed improves
the ESNR of the corresponding client.

290°
D. Aggregate System Results

We evaluate our full system with two robot routers serv-
ing three clients with different ESNR demands. We perform
(@) Network Topology the experiment in line-of-sight (LOS) and non-line-ofisig

o
@ o.i2 0.05

2" Ne -90° O (NLOS) settings as shown in the inset maps of Fig. 14(b) and
2 oos < -30 14(d) respectively. We repeat the experiment five times @mea
_g oo setting and plot the results.
ﬁooz Results: Fig. 14(a) and 14(b) plot the mean and standard
G0 o o s o G =0 o Angle (deg) deviation of ESNR over time across experiments for each
(b) SAR Power Profiles client (dotted colored lines) in LOS and NLOS. Clearly, each

client's ESNR demand (solid lines) is satisfied at the cogwer
position across experiments. Fig. 14(c) and 14(d) plot the
corresponding aggregate link rate across time, whichvialo
the same trend as the ESNR [Halperin et al., 281Tfe inset
rm— plots in Fig. 14(c) and 14(d) depict the final converged paisit
.. Angle (deg) of the routers (blue dots) in LOS and NLOS. The results show
(c) Average ESNR per Direction that our s . . . .
ystem consistently satisfies client demands while
Fig. 11. We validate our computed direction of signal sttenfpr two adaptlng to real-time changes in wireless channels, even in
representative configurations of (a) line-of-sight and-fioe-of-sight settings. the presence of obstacles.
(b) Power profiles indicating direction of maximum signaksgth. (c) Service
quality (average ESNR) measured along each spatial dire¢tie horizontal . . L.
dotted line indicates the ESNR at the initial position. E. Comparison with Existing Schemes
We test our method against two other popular approaches
to the communication problem in robotics: 1) Euclidean Disk
towards the client regardless of its initial position. In ®8, Model as used in [Cortes et al., 2004; Jadbabaie et al., 2003]
the robot is directed away from obstacles so that controdier where communication constraints are in terms of Euclidean
route around obstacles to improve signal strength. We sstrestance; 2) Stochastic Gradient Approach, where we imple-
that Bmax is found locally at the router purely via wirelessment the Simultaneous Perturbation method (SPSA) [Spall,
channels and its own positionyithout prior knowledge of 2000] for estimating the gradient of signal power by samplin
the environment. Further, the plots are not static and alyur the ESNR (which provides greater granularity than RSSI),
change over timeespecially in dynamic settings. Thus ouglong randomized directions, similar to the approachzetili
system obtains instantaneofigax values locally in real-time. py [Le Ny et al., 2012]. For the generation of each direction
Fig. 12(c) and 12(d) plotfij(8), the power profile of jn the SPSA method we use a Bernoulli random variable
the signal along different directions, for a candidate fmra (as in [Spall, 2000]) and diminishing step sizes satisfying
in line-of-sight and non-line-of-sight scenarios, resp@ly. the conditions stated in [Spall, 2000] for convergence. Our
Clearly, the power profile in line-of-sight is dominated by gargest step size was allowed to be the same maximum vehicle
single peak afinax, directed along the line-of-sight path to theselocity of v for all experiments. We consider a robotic router
client. In contrast, the power profile in non-line-of-sigidse and three clients, each with an ESNR demand of 20 dB.
to an obstacle has two significant peaks, each correspotwingve repeat the experiment five times in the non-line-of-sight
reflected paths along walls or other objects in the envirartmeenvironment in Fig. 15(b)-(d). In each instance, we measure
I'max the maximum ratio of ESNR demand versus the ESNR

C. Controlling Router Trajectory to satisfy Client Demands achieved among all three clients. In particulafax is below

We evaluate how a single robotic router finds a trajecto). at the converged position (i.e. all client demands are
9 ! qtisfied), and above one otherwise.

to satisfy the demands of three clients (specified in terms 0 .
effective signal-to-noise ratio or ESNR) usitiax on each Results: Fig. 15(a) plots the aggregate mean and standard
link. We consider the candidate non-line-of-sight setting deviation ofrmaxacross time, for all the three approaches. Fig.
Fig. 13(a). The router is unaware of exact client positions 85(b)-(d) show a candidate trajectory adopted by the roboti
the layout of the environment. router for the three schemes. The plots demonstrate while

. . . . the disk model converges quickly to a solution, ignorance
_Results: Fig. 13(a) depicts the trajectory of the robotic routeéf the wireless channelg Iea?js to );olutions not mee%ingltclie
in blue. The colored arrows denote the recommentdgg demands; especially in non-line-of-sight settings. Intcast,

directions for each client at every control point. The f|gur€i!e stochastic gradient approach (in blue), which sampge th
|

ﬁhg\\/’é?]tﬁg\ll;/ tz:\tirsc;it:ec;t ﬁgtgvcgmsdg%rgﬁggo ;IO mg(g;:tt'?arﬁesu? stantaneous ESNR, eventually satisfies network demands.
y - F19. However, the convergence is often laborious as the router

ESNR of the clients across time (dotted lines). The plot ShO\gf . . -
. 2 . ten traverses counter-productive directions (see FBg(c)).
that the ESNR demands of each client (solid lines) are &Bdlsﬂl deed such techniquespare noisy at low signg\l powe% 25 even
d )

upon convergence. Note that the whenever the robot decide

t_O follow the vQmax of a client at a .Contr_0| point (Ver'_[ical 3Note that the data-rate is capped by 60 Mb/s causing the @lappear
line), the client’s ESNR increases. This validates oumgltiat flat at times unlike ESNR.

ESNR(dB)

-100 -50 o 50 100 -100 -50
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(a) Max Communication Strength Direction Map (b) Max Communication Strength Direction Map
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Fig. 12. Gradient field oBnax and power profile for (a) Line-of-sight and (b) Non-Line-®ight.
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(a) Comparison ‘(b)Euclidean Disk Model Rate under Dynamic Obstacles
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Fig. 16. These plots show the result of disturbing the walehannels via
movement of a line-of-sight obstructing obstacle. Actestibed snapshots are
shown on the right.
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Y
X(m)

Fig. 15. Plots comparing our method against the Euclideak diodel . .
and a stochastic gradient descent method based on ESNR. @nedrboth  platform to move with a known constant velocity between

converges to a position that meets communication demamdscanverges control actions.
quickly along an efficient path.

A. Gradient Field in Complex Environments

a large change in distance translates to a small changenialsig In this experiment, we measure the gradient field capturing

power (a well-studied problem, e.g. in [Chen et al., 2018hdo the direction of maximum signal strength across spatiaddoc

et al., 2013; Xiong and Jamieson, 2013]). Fig. 15(c) showas thions in the above testbed without Vicon support. We place a

this leads to areas at non-line-of-sight or far distancemfr robotic router and client and line-of-sight (LOS) and noret

the client, where the robot easily gets lost. of-sight (NLOS) as in Fig. 17. We trace the router’s gradient
Our method leverages full channel information, includinfjeld towards the client starting from multiple initial ptisins.

S|g_nal power ar!d phase, to find t.he signal Q|rectlon as Om*”%?esults: Fig. 17 (a) and (b) plot of candidate trajectories (from

tojust its magmtudg. The resultis an algorlt_hm that cogesr gradient field) in LOS and NLOS across initial locations. The

to positions that satisfy network demands without the ceunt s show that our system successfully navigates towards

productive exploration of a pure sampling approach. the client to satisfy its demands, without knowledge of the
environment or client location.

F. Robustness to Dynamic Obstacle Positions

We evaluate how our system adapts to changes in tBe Full-Scale Experiment in Complex Environments

enl;nrc_)nment W'thotl;t ﬁm prllt_)rl kn_own map. Consider t_v;/wo We implement a full-scale experiment of two routers and
I)%s(t)gglerolgtfarfe(?r}nit}alrleeagIiﬂfwlr? iﬁnF?nV'ig?ge%ewg"Oéme clients in the c_omplex in<_joor environment desc_ribed _in
the robot routers to na\%gate to their con\g/érged hositiMs ec. VII-A above with no motion capture support. Clients in
; " this case are static Asus 1015PX series netbooks and routers
t =120 sec, we move the obstacle to a different location gg, sgcTec Atom boards mounted on mobile iRobot Create
in Fig. 16(c), and let the routers re-converge. platforms.
Results: Fig. 16(b) and Fig. 16(c) depict the converged Clients are positioned in two clusters along orthogonal
position of the routers before and after the obstacle wasethovhallways, ie. a non-convex environment. Routers are plated
Fig. 16(d) plots the data-rate across time for each cliehe Tthe initial positions as shown in the floorplan in Figure 18(a
plot shows that our system satisfies client demands at tti@l iniFor these initial router positions, Client 1 and Client 2 logh
position. It also recovers from the sharp fall in rate at dient  out of direct line-of-sight as they are obstructed by a cetecr
and successfully re-converges after the obstacle is moved.wall.
The relative displacement of the Wi-Fi antenna, required by
VII. EXPERIMENTAL RESULTS WITHOUTMOTION Algorithm 1 to obtain a directional signal strength profike,
CAPTURE SUPPORT measured by assuming the router moves at a constant velocity

In this section, we evaluate our system in a large corfsee Sec. IV-B). . i
plex indoor environment with concrete walls and columns Before calculating the next waypoint, each router is com-

without any motion capture support (see Fig. 17). Insteganded to move at constant velocity for a period of 24 seconds

we use a constant velocity assumption to infer the relatiéhich is equivalent to two wavelengths in displacement. The
displacementsgi(t) (see Algorithm 1) , of the Wi-Fi antennat®mmanded waypoint from the control Algorithm 4 is then
on the router. The requirements for obtainiig) as described Provided as a heading/distance pair which is actuated by the
in Section 1V, are that the robot router moves at a constdiUter using dead reckoning.

known velocity over the time window required for computindResultsFigure 18(a) depicts the initial configuration of the
SAR. Thus in our experiment we command the iRobot Createtwork of routers and clients. The dotted lines indicatéctvh
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Fig. 17. Trajectories using measurgg),,, directions satisfy a client's demand in line-of-sight armh#ine-of-sight settings in complex indoor environments
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; ; ; Fig. 19. Router trajectories resulting from execution ofmooanded way-
cluster of clients each router is assigned to by the Como"goiﬂts from Algorithm 4. These paths were executed via deakoning for

These assignments are optimized by the controller bas@fiter 1 (a) and Router 2 (c). Corresponding measured ESNRsor

on the observed ESNR values as described in Algorithm Router 1's clients (b) and Router 2's clients (d) respetive

Figure 18(b) show the converged positions of the routers ind

cating that all client demands are satisfied at these positla

particular, Figure 19 demonstrates the trajectories tsszeby move in the environment, is lost since this would invalidate

Router 1 and Router 2 (left top and left bottom respectivelg}atic map. Therefore this is a trade-off that would havedo b

and the corresponding ESNR curves for each router’s assigm¥aluated carefully for each situation.

clients on the right column. The ESNR curves are averaged

over a window of 24 seconds as the router moves along its

trajectory, and the solid blue squares indicate the timesrg/h

a control action was given. As shown by ESNR curves in In this paper, we present a framework to satisfy real-time

Figure 19, all client demands are satisfied at the final routeariable communication demands for a changing network.

configuration. We develop a solution enabling a robotic receiver to find

the profile of signal strength across spatial directions for

VIIl. DISCUSSION each sender of interest. While our technique retrievesethes

Our primary focus in the body of this paper has been &patial signal profiles in real time, we note that it faces an
developing a closed-loop controller that uses instantamedmpPortant limitation: it assumes access to wireless chianne

feedback on wireless channels to position routers. This red0m both the transmitter and the receiver. Developing a
time feedback allows for routers to repair communicatiokdi SYStem that can work with unmodified transmitters remains
on the fly as needed, for example in the case of dynanftf OP€N challenge. Our_system integrates _the S|gr!al prqﬁles
obstacles that may occlude a link. However, here we point o4t @ controller that optimizes communication quality tehi

that it is also possible to use the methods presented in tHjgintaining quadratic edge costs, and thus has naturat-exte
paper to obtain a static directional map of signal strength, sions to many communication-aware coordination problems

gradient field, throughout the environment. In fact, thémiess SUch as coverage[Cortes et al., 2004], consensus[OtéeS

of directional profiles derived here would allow mapping to §¢ &l 2007], formation control[Jadbabaie et al., 2003, e
level of accuracy that was previously unattainable for $m N believe our system prc_)wdes the necessary robu_stness to
mobile platforms. Such a gradient field (as in Figure 12) ¢ mg_the benefits of these important contributions to peatt

be used to plan router placements that are globally optimdgPotic systems.

in contrast to the local solutions provided here. Howevds i Acknowledgments: The authors thank Dan Feldman for his
important to point out that in this case the ability to adapt tcomments on problem formulation and previous collaboratio

changes in the environment, for example if obstacles ontdie on k-center approaches that inspired much of this work, and

IX. CONCLUSION
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