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Abstract Multi-robot networks use wireless communica-
tion to provide wide-ranging services such as aerial surveil-
lance and unmanned delivery. However, effective coordina-
tion between multiple robots requires trust, making them
particularly vulnerable to cyber-attacks. Specifically, such
networks can be gravely disrupted by the Sybil attack, where
even a single malicious robot can spoof a large number of fake
clients. This paper proposes a new solution to defend against
the Sybil attack, without requiring expensive cryptographic
key-distribution. Our core contribution is a novel algorithm
implemented on commercial Wi-Fi radios that can “sense”
spoofers using the physics of wireless signals. We derive the-
oretical guarantees on how this algorithm bounds the impact
of the Sybil Attack on a broad class of multi-robot problems,
including locational coverage and unmanned delivery. We
experimentally validate our claims using a team of AscTec
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quadrotor servers and iRobot Create ground clients, and
demonstrate spoofer detection rates over 96%.
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1 Introduction

Multi-robot networks rely on wireless communication to
enable a wide range of tasks and applications: coverage
(Parker 2002; Cortes et al. 2004; Schwager et al. 2009a), dis-
aster management (Daniel et al. 2009), surveillance (Beard
et al. 2006), and consensus (Olfati-Saber and Murray 2004)
to name a few. The future promises an increasing trend
in this direction, such as delivery drones which transport
goods (e.g., Amazon Prime Air http://www.amazon.com/
b?node=8037720011) or traffic rerouting algorithms (e.g.,
Google Maps Navigation) that will rely on broadcasted user
locations to achieve their goals. Effective coordination, how-
ever, requires trust. In order for these multi-robot systems
to perform their tasks optimally, transmitted data is often
assumed to be accurate and trustworthy—an assumption that
is easy to break. A particularly challenging attack on this
assumption is the so-called “Sybil attack.”

In a Sybil attack a malicious agent generates (or spoofs)
a large number of false identities to gain a disproportionate
influence in the network. These attacks are notoriously easy
to implement (Sheng et al. 2008) and can be detrimental to
multi-robot networks. An example of this is coverage, where
an adversarial client can spoof a cluster of clients in its vicin-
ity in order to create a high local demand, in turn denying
service to legitimate clients (Fig. 1). Although a vast body
of literature is dedicated to cybersecurity in general multi-
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Fig. 1 Sybil attack on coverage: a server robot provides locational
coverage to legitimate clients when no attack is present. In a Sybil
attack, an adversary spoofs many fake clients to draw away coverage
from the legitimate clients
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node networks (e.g., a wired LAN), the same is not true for
multi-robot networks (Higgins et al. 2009; Sargeant and Tom-
linson 2013), leaving them largely vulnerable to attack. This
is because many characteristics unique to robotic networks
make security more challenging; for example, traditional key
passing or cryptographic authentication is difficult to main-
tain due to the highly dynamic and distributed nature of
multi-robot teams where clients often enter and exit the net-
work.

This paper addresses the challenge of guarding against
Sybil attacks in multi-robot networks. We focus on the
general class of problems where a group of server robots
coordinate to provide some service using the broadcasted
locations of a group of client robots. Our core contribution is
anovel algorithm that analyzes the received wireless signals
to detect the presence of spoofed clients spawned by adver-
saries. We call this a “virtual spoofer sensor”” as we do not use
specialized hardware nor encrypted key exchange, but rather
a commercial Wi-Fi card and software to implement our
solution. Our virtual sensor leverages the rich physical infor-
mation already present in wireless signals. At a high level,
as wireless signals propagate, they interact with the environ-
ment via scattering and absorption from objects along the
traversed paths. Carefully processed, these signals can pro-
vide a unique signature or “spatial fingerprint” for each client,
measuring the power of the signal received along each spatial
direction (Fig. 2). Unlike message contents such as reported
IDs or locations which adversaries can manipulate, spatial
fingerprints rely on physical signal interactions that cannot
be exactly predicted (Goldsmith 2005; MalmirChegini and
Mostofi 2012).

Using these derived fingerprints, we show that a confi-
dence metric, @ € (0, 1) can be obtained for each client in
the network. We prove that these confidence metrics have a
desirable property where legitimate clients have an expected
confidence metric close to one, while spoofed clients will
have an expected confidence metric close to zero. A partic-
ularly attractive feature of the confidence metric « is that
it can be readily integrated into a wide variety of multi-
robot controllers. In particular, we demonstrate two natural
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Fig. 2 Spatial fingerprints: a quadrotor server measures the directional
signal strength of each client (here, simplified to 2-D). The fop-right
client has one line-of-sight peak; the other (bottom-right client) , 2
signal paths

methods to integrate « into these controllers: either as a
continuous per-client weighting function or as a means to
classify clients discretely into two groups as either legitimate
or spoofed. More importantly, we prove analytical bounds
on « that provably limit the influence of adversarial clients
on the performance of these controllers. We integrate our
confidence metric with multi-robot controllers in the context
of two well-known problems: locational coverage (Cortes
et al. 2004; Schwager et al. 2009a) and unmanned deliv-
ery (http://www.amazon.com/b?node=8037720011, Laporte
et al. 1988; Pavone et al. 2011).

We provide an extensive experimental evaluation of our
theoretical claims using a heterogeneous team of air/ground
robots consisting of two AscTec Hummingbird platforms and
ten iRobot Create platforms. We conduct our experiments
in general indoor settings with randomly placed clients. Our
results in both the coverage and unmanned delivery problems
demonstrate a spoofer detection rate of 96%. In addition, for
the case of coverage we find that the converged positions of
the service robots is on average 3 cm from optimal even when
more than 75% of total clients in the network are spoofed.

1.1 Contributions of this paper

We develop a virtual sensor for spoofing detection which
provides performance guarantees in the presence of Sybil
attacks and is applicable to a broad class of problems in dis-
tributed robotics. We show that the influence of spoofers is
analytically bounded under our system in two contexts: (1)
locational coverage, where each robot providing coverage
remains within a bounded radius of its optimal position even
in the presence of adversarial clients. (2) unmanned delivery,
where the total path length traversed by the service vehi-
cle remains bounded relative to its value in the absence of
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an attack. Our theoretical results are validated extensively
through experiments in diverse settings.

2 Related work
2.1 Sybil attack

In a network comprised of multiple agents, a Sybil attack
is one where a single agent can simultaneously forge mul-
tiple identities in order to gain a disproportionate influence
in the network. The survey article (Newsome et al. 2004)
describes in detail many different types of Sybil attacks and
in Douceur (2002), Douceur proves several results show-
ing that without a centralized authority, Sybil attacks are
always possible for any practical distributed network. The
survey paper in Levine et al. (2006) acknowledges the spar-
sity of solutions applicable to distributed systems that lack
a centralized key distribution system. In contrast, our pro-
posed method does not rely on centralized key distribution or
verification of keys but rather verification using inter-agent
communication signals themselves, already present in dis-
tributed systems.

2.2 Other approaches to security

The problem of Sybil attacks has been studied in general
multi-node, often static, networks, and many tools have been
developed for these settings. Past work falls under three cat-
egories: (1) Cryptographic authentication schemes can be
used to prevent Sybil attacks [Table 7 in Wang et al. (2006)].
These require trusted central authorities and computation-
ally expensive distributed key management, to account for
dynamic clients that enter and leave the network (Wang
et al. 2006). (2) Non cryptographic techniques in the wire-
less networking community leverage wireless physical-layer
information to detect spoofed client identities or falsified
locations (Jin and Song 2014; Yang et al. 2007, 2013; Xiong
and Jamieson 2013; Xiao et al. 2009). These rely on bulky
and expensive hardware like large multi-antenna arrays, that
cannot be mounted on small robotic platforms. (3) Recent
techniques have attempted to use wireless signal information
like received signal strength (RSSI) (Liu et al. 2014; Wang
and Yang 2013; Pires et al. 2004) and channel state informa-
tion (Liu et al. 2014). Such techniques need clients to remain
static, since mobility can cause wireless channels to fluctuate
rapidly (Adib et al. 2013). In addition, they are susceptible to
power-scaling attacks, where clients scale power differently
to imitate different users. In sum, the above systems share
one or more of the following characteristics making them ill-
suited to multi-robot networks: (1) require computationally
intensive key management; (2) rely on bulky and expensive
hardware; (3) assume static networks. Indeed past work has

highlighted the gravity and apparent sparsity of solutions to
cyber-security threats in multi-robot networks (Higgins et al.
2009; Sargeant and Tomlinson 2013; Chapman et al. 2009).

Unlike past work, our solution has three attributes that par-
ticularly suit multi-robot networks. (1) It captures physical
properties of wireless signals and therefore does not require
distributed key management. (2) It relies on cheap commod-
ity Wi-Firadios, unlike hardware-based solutions (Xiong and
Jamieson 2013; Yang et al. 2007). (3) It is robust to client
mobility and power-scaling attacks.

Finally, our system builds on Synthetic Aperture Radar
(SAR) to construct signal fingerprints (Fitch 1988).

2.3 Synthetic Aperture Radar (SAR)

SAR has been widely used for radar imaging (Fitch 1988;
Klausing 1989) and indoor positioning (Kumar etal. 2014a, b;
Wang and Katabi 2013; Gil et al. 2013). In contrast,
this paper builds upon SAR to provide cyber-security to
multi-robot networks. In doing so, it provides theoretical
security guarantees that are validated experimentally. These
integrate readily with performance guarantees of existing
multi-robot controllers, like the well-known robotic cover-
age controllers (Cortes et al. 2004; Schwager et al. 2009a)
as shown in Sect. 6 and drone delivery controllers (Laporte
et al. 1988; Pavone et al. 2011) as described in Sect. 7.

Our previous work in Gil et al. (2015b) provides a the-
oretical and experimental framework for using SAR in the
context of cybersecurity for multi-agent networks, where the
influence of spoofed nodes is considered to be a continuous
function. As a result, the previous formulation would not be
applicable to graph-based problems that require a binary clas-
sification for the spoofed nodes. This paper extends upon our
previous work by (1) deriving theoretical results for multi-
robot problems that require optimization over a graph, (2)
giving explicit treatment to the unmanned delivery problem
as an example in the graph-based problem space, and (3) pre-
senting an experimental framework for binary classification
of spoofed nodes using Wi-Fi fingerprints.

3 Problem statement

This paper focuses on problems where the knowledge of
agent positions facilitates some collaborative task. Specifi-
cally, it assumes two groups of agents, “clients” requiring
some type of location-based service such as coverage or
goods delivery and “servers” whose positions are opti-
mized in order to provide the service to its clients. Let

P = {p1,..., pc} denote the client positions in R3. Let
X = {x1, ..., xn} be the positions of the servers in R3 and
the notation [m] = {1, ..., m} denote their indices. We con-
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sider the case where a subset of the clients, § C P (with
s :=|S|) are “spoofed” clients.

Definition 1 (Spoofed Client) A single malicious client may
generate multiple unique identities, each with a fabricated
position. Each generated, or “spawned” identity is considered
a spoofed client. By spoofing multiple clients, the mali-
cious client gains a disproportionate influence in the network.
All clients which are not spoofed are considered legitimate
clients.

3.1 Threat model

Our threat model considers one or more adversarial robot
clients with one Wi-Fi antenna each. The adversaries can
be mobile and scale power on a per-packet basis. We only
consider adversarial clients.! Adversarial clients perform the
“Sybil Attack” to forge packets emulating s non-existent
clients, where s can exceed the number of legitimate clients.
More formally:

Definition 2 (Sybil Attack) Define a network of client and
server positions as P U X, where a subset S of the clients
are spoofed, such that P = S U S. We assume that set P is
known but knowledge of which clients are spoofed (i.e., in
S) is unknown. This attack is called a “Sybil Attack.”

To counter the Sybil attack, this paper has two objec-
tives. First, we find a relation capturing directional signal
strength between a client i and a server /. We seek a mapping
Fi; - [0, %] x [0, 2] +— R such that for any 3D direction
(0, ¢) defined in Fig. 4, the value Fj; (0, ¢) is the power of
the received signal from client i along that direction. Using
this mapping, or “fingerprint”, our first problem is to derive
a confidence metric whose expectation is provably bounded
near 1 for legitimate clients and near O for spoofed clients.
Further, we wish to find these bounds analytically from prob-
lem parameters like the signal-to-noise ratio of the received
wireless signal. We summarize this objective as Problem 1
below:

Problem 1 (Spoofer Detection) Let F; be the set of finger-
prints measured from all clients j € [c] and servers [ € [m]
in the neighborhood, NV}, of client i.> Here, a neighborhood
of client i, NV, are all agents that can receive Wi-Fi transmis-
sions sent by client i. Using F;, derive a confidence metric

! The case of adversarial server robots is left for future work although
many of the concepts in the current paper are extensible to this case as
well.

2 Detecting if a client i is spoofed becomes easier given more servers
communicating with i (i.e., a larger neighborhood A;). But even with
a single server, this determination can be made. A theoretical treatment
of this point is given in Sect. 5 and experimental results (Sect. 9.1) use
as little as one server.

@ Springer

o; (F;) € (0, 1) and a threshold w; (01.2) > (0 where Uiz repre-
sents error variances such as the signal-to-noise ratio that are
assumed to be given. Find w; (-) to have the provable property
of differentiating spoofed clients whereby spoofed clients are
bounded below this threshold, i.e., E[¢;] < w, and legitimate
clients are bounded above this threshold E[«;] > 1 — w.

Our second objective is to apply our spoofer detection
method as weights that can bound the influence of spoofers
in multi-robot problems. Specifically, we consider the well-
known coverage problem in Cortes et al. (2004), Schwager
et al. (2009a). We show that by integrating the confidence
metric from Problem 1, we can analytically bound the error
in performance caused by spoofed clients in the network. We
consider the coverage problem where an importance function
is defined over an environment and where the positions of the
clients correspond to peaks in the importance function. Here,
servers position themselves to maximize their proximity to
these peaks, to improve their coverage over client robots. If
Cyv = {x}, ..., x;}isthesetof server positions optimized by
the coverage controller with zero spoofers, we wish to guar-
antee that server positions optimized with spoofers present,
Cy,, is “close” to Cy. We state this second objective more
specifically as Problem 2 below:

Problem 2 (Sybil-resilience in Multi-Robot Coverage) Con-
sider a locational coverage problem where an importance
function p(g) > 0 is defined over an environment Q C R3
and g € Q. Specifically, consider an importance function
that can be decomposed into terms, p; (¢), depending on each
client’s position, i € [c] (for example, each client position
corresponds to a peak), i.e., p(q) = p1(g) +- - -+ pc(g). Let
Cyv = {x{, ..., x};} be the set of server positions returned
by an optimization of p(g) over X, where there are zero
spoofed clients in the network. Under a Sybil attack, let
Cy, = {x1, ..., x,} be the set of server positions returned
by an optimization of an «-modified importance function
p(q) = a1p1(g) + -+ + acp:(q) where the importance
weight terms o; satisfy the bounds stated in Problem 1. We
wish to find an €(P) > 0 such that the set Cy, is within
a distance €(P) to Cy. Cy, is within a distance €(P) to
Cy if Vx e Cy, there exists a unique y € Cy where
dist(x, y) < €(P). Here, P is a set of problem parameters
that we wish to find.

Intuitively, solutions to Problem 2 guarantee that under
a Sybil attack, all server positions computed using an
a-modified coverage controller are within a computable dis-
tance € (P) from their optimal positions (i.e., in the absence
of spoofers). Section 6 derives a closed-form for €(P) and
shows the set P of problem parameters to be the number
of spoofers, the footprint of the environment covered, and
signal noise.

Finally, Problem 3 below shows that the o weights can be
used to derive discrete decision variables for selecting what
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clients to service, for example, in a drone delivery context.
Here, the goal is to bound the difference between the result-
ing expected path length and the expected path length in the
optimal case of no spoofed clients. For consistency, we will
refer to the delivery drone as a “server” throughout.

Problem 3 (Sybil-resilience in Drone Delivery) Consider
the graph G = (V, E) where vertices V = P U x are client
and depot positions P and x respectively, and edges ¢; € E
connect the vertex of every client p; € P to the depot vertex
X, i.e., a star graph where x is the inner vertex. Note that we
consider the case for one server and several clients where the
goal of the server is to serve each client, by iteratively pick-
ing up its package at the depot location x and transporting it
to the client’s location p € P.

Let the path cost for each edge d : (E) — R be the
Euclidean distance of that edge in G. We wish to show that
an indicator function Iy, defined over the «; from Prob-
lem 1 can be used as a decision variable to select a subset
of clients P* C P to be serviced by the delivery vehicle.
The resulting subset of clients P* has the property that the
expected path length computed over this subset of clients,
L = Zp,'EP* d(pi, x), is the same to within a computable
bound, as the expected path length computed over only legit-
imate clients Liegjt = > PiEP\S d(pi, x). In other words, we
wish to find a set of problem parameters P and a bound § (P)
such that |E[L] — E[Liegit]l| < 8(P).

4 Fingerprints to detect malicious clients

Here we construct a fingerprint, a directional signal strength
profile for a communicating server-client pair. Our choice
of signal fingerprints have many desirable properties that
enable us to derive a robust spoof-detection metric: they
(1) capture directional information of the transmitted signal
source and thus are well-suited for flagging falsely reported
client positions, (2) can be obtained for a single server-client
pair, unlike location estimation techniques such as triangula-
tion which require multiple servers to coordinate, (3) cannot
be manipulated by the client, since the occurrence of each
signal path is due to environment reflections, (4) are applica-
ble in complex multipath environments where a transmitted
signal is scattered off of walls and objects; since these scat-
tered signals manifest themselves as measurable peaks in
the fingerprint, complex multipath contributes significantly
to fingerprint uniqueness.

We construct fingerprints using wireless channels 7,
complex numbers measurable on any wireless device charac-
terizing the attenuation in power and the phase rotation that
signals experience as they propagate over the air. These chan-
nels also capture the fact that wireless signals are scattered
by the environment, arriving at the receiver over (potentially)

-200 -100 0 100

Direction (deg

Fig. 3 Example signal fingerprint: a server (x) receives a client (filled
circle) signal on 2 paths: direct along 40° attenuated by an obstacle
(shaded square) and reflected by a wall along 60°. b is a corresponding
fingerprint: peak heights at 40° and 60° correspond to their relative
attenuations

several different paths (Tse and Vishwanath 2005). Figure 3
is an example 2D schematic of a wireless signal traversing
from a client robot to a server robot arriving along two sepa-
rate paths: one attenuated direct path at 40° and one reflected
at 60°. If the server robot had a directional antenna, it could
obtain a full 3D profile of power of the received signal (i.e.,
|h|?) along every spatial direction. We use such a 3-D profile
as a “spatial fingerprint” that can help distinguish between
different clients.

Unfortunately directional antennas are composed of large
arrays of many antennas that are too bulky for small agile
robot platforms. Luckily, a well-known technique called Syn-
thetic Aperture Radar (Fitch 1988) (SAR) can be used to
emulate such an antenna using a commodity Wi-Fi radio.
Its key idea is to use small local robotic motion, such as
spinning in-place, to obtain multiple snapshots of the wire-
less channel that are then processed like a directional array
of antennas. SAR can be implemented using a well-studied
signal processing algorithm called MUSIC (Hayes 1996) to
obtain spatial fingerprints at each server robot.

Mathematically, we obtain a spatial fingerprint for each
wireless link between a server / and client i as a matrix
Fi;: R x R — R. For each spatial path represented as (6, ¢)
(see Fig. 4), F;; maps to a scalar value representing the signal
power received along that path. More formally:

Fu($,0) = 1/|Eig, (hgh})eV~"¥1®:02 (1)

where ﬁil is a vector of the ratio of wireless channel snapshots
between two antennas mounted on the body of the server/ and
Ui (¢, 0) = % cos(¢ —By) sin(6 —I'), A is the wavelength
of the signal and r is the distance between the antennas, By, I'}
are the server’s angular orientation, Eig,(-) are noise eigen-
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Fig. 4 3-D angles: this figure depicts the notation for the azimuthal
angle ¢ and polar angle 0 for the direct path from a ground client (filled
circle) to aerial server robot (x) in 3 dimensions. More generally, the
set of all angles between client i and server / are denoted as @;;, ©;
respectively

vectors, (-)7 is conjugate transpose. We denote the number
of signal eigenvectors, equal to the number of paths, by k.

While our above formulation is derived from MUSIC
(Hayes 1996), it varies in one important way: while MUSIC
uses a single-antenna channel snapshot h;;, we use the
channel ratio h;; = hy ./ h2,, between two antennas. This
modification provides resilience to intentional power scaling
by the sender since scaling his transmit power by yx yields
a measured ratio fl,-l = xh1,/(xh2,); a value unaffected by
power scaling (Table 1).

5 Constructing a client confidence metric

Given a client fingerprint Fj;(¢, 0) for each client i relative
to arobotic server /, we wish to generate a confidence metric
a; € (0, 1) that approaches 1 for legitimate clients, and 0

otherwise. We achieve this by defining ¢; as the product of
two terms B; and y;; that go to 0 if a client reports a fal-
sified location or has the same fingerprint as another client
Jj respectively. In particular, §; is termed the honesty metric
and is the likelihood (Eq. 2) that client i is indeed along its
reported direction (¢;;, 8;;) with respect to each server [ in its
neighborhood. The second term y;; is the similarity metric
- the likelihood that client i’s fingerprint as seen by server
[ is not unique compared to that of a different client j of
server [. Finally, o; is the product of (1) 8; and (2) (1 — y;;)
over all j # i, which compares client i’s fingerprint with all
other clients in its neighborhood and approaches O if client i’s
profile is not unique. Therefore if either the honesty term or
similarity term goes to 0, the confidence metric «; for client
i also approaches zero.

o = Bi H(l — vij) where,

J#L
Bi =[] £Gisat (¢, ) Fir)
leN;
vij = [ | £ spoofs jlFis, Fjr) )
leN;

Here, L£(-) denotes an event likelihood, (¢;;, 6;;) is the
reported direction of client i with respect to server /, and the
neighborhood N; are servers communicating with client i.

5.1 Defining honesty and similarity metrics
The honesty metric 8; and similarity metric y;; are derived

using peak locations in client fingerprints. In practice how-
ever, peaks may have slight shifts owing to noise. Thus,

Table 1 Table of most common

. Symbol
notations

Meaning

m,c,s
Pi> Xl

Fi, k

hy;
fCipo?)
g( i, 0?)
K

ai, Bi
Yij
SNR

RSSI

2 2
0. 0y
A2 A2
6450y
Cy,, Cy,

L(Q), p(q)

No. of servers, clients, spoofers
Position of client i/server [
Fingerprint of i at [, k peaks

M x 1 channel ratios of i to [

PDF of normal distribution

min(1, 27 f(x; 1, 02))
Constant = <(«/§+ ﬁ) /7T)2

confidence, honesty metric of i

Similarity metric of client 7, j

Signal-to-noise ratio

Received signal strength

Variance in peak shifts of Fj;

092, od% plus measurement error

Coverage centroid of optimal, our system; error e within €

Footprint, mass function
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any comparison between peak locations must permit some
variance due to these shifts. Fortunately, noise in wireless
environments can be modeled closely as additive white-
Gaussian (Tse and Vishwanath 2005). As the following
lemma shows, this results in peak shifts that are also Gaus-
sian, meaning that their variance is easy to model and account
for. More formally, the lemma states that shifts are normally
distributed with zero mean and well-defined variance, based
on the wireless medium’s signal-to-noise ratio (SNR):

Lemma 1 Let A6;, A¢; denote the error between the
azimuthal and polar angle of the uncorrelated i™ path of a
(potentially multipath) source and the corresponding angles
of the (local) maximum in the fingerprint F (¢, 0), over sev-
eral uniformly gathered packets (i.e., SAR snapshots) for
0 € (10°, 80°). Then A6; and A¢; are normally distributed
with a mean 0, and expected variance 04% and 002:

oj =0 =92*/(8Mn’r’SNR) (3)

where, ) is the wavelength of the signal, SNR is the signal-
to-noise ratio in the network,> M is the number of packets
per-rotation, and r is the distance between the antennas. O

The above lemma follows from well-known Cramer-Rao
bounds (Mathews and Zoltowsk 1994; Gazzah and Marcos
2006, 2003) shown previously for linear antenna movements
in SAR (Stoica and Arye 1989) but readily extensible to
circular rotations (proof in supplementary text Gil et al.
2015a). Note that from Eq. (3) the relationship between the
antenna distance r and the resolution of the resulting finger-
print o becomes apparent. The larger the distance between
two mounted antennas used in the channel ratio (Eq. 1), the
smaller the error variance and thus the finer the resolution of
the fingerprint.

Using this lemma, we can define the honesty metric §; as
the likelihood that the client is at its reported location, subject
to this Gaussian error and additional measurement error in
reported locations.

Definition 3 (B;) Let ¢, and 6, denote the closest maxi-
mum in Fj;(¢, 0) to (¢i1, 0;1). We denote &(% and 892 as the
variances in angles, o(g and 092, plus any variance due to mea-
surement error of reported locations that can be calibrated
from device hardware. We define B; for client i as:

Bi =] 2@ — ¢ri:0,65) x g — 0£,:0.65) (4
l

where g(x; i, 02) =min(l, v/27 f(x; u, 02)) is a normal-
ized Gaussian PDF f(x; u, 02) with mean p and variance

o2, o

3 For clarity, we drop dependence on i, [ for SNR, oy and 0.

In practice, reported client locations are subject to mea-
surement errors due to position sensor inaccuracies. Our
definition of B; above accounts for this by using the effective
variances &é and 892 that are the sum of the variance in angles,
O’q% and 092, in addition to the variances due to measurement
error.

Using Lemma 1 we define the similarity metric y;; as the
likelihood that two client fingerprints share identical peaks:

Definition 4 (y;;) Let (®;;, ©;;) and (®;, ®;;) denote the
set of local maxima, ordered by non-decreasing angle values,
in fingerprints Fj; and Fj;. We define y;; for client i relative
to client j as:

Vij = 1_[

$i€Di1,p; €D

< 1

9,‘6@,‘],91'661‘1

(i — $j:0,207)

g(6; —6;0,202) ®)

where g(-; i, 02) is from Definition 3, and the factor of 2 in
the variance accounts for computing the difference of two
normally distributed values. U

5.2 Defining the confidence metric

We notice that Egs. (2), (4) and (5) fully define «; for each
client i. In summary, the confidence metric is computed in
three steps: (1) Obtain the client fingerprint using SAR on
wireless signal snapshots. (2) Measure the variance of peak
locations of these client fingerprints using their Signal-to-
Noise Ratio. (3) Compute the similarity and honesty metrics
using their above definitions to obtain the confidence met-
ric. Algorithm 1 below summarizes the steps to construct
a; for a given client i. The computational complexity of
obtaining the confidence metric for each client i depends on
the number of servers m and clients ¢ in the neighborhood
N; of i as shown in Algorithm 1, and for each client-server
pair, the dominant complexity is in computing the fingerprint
which can be done using the well-known MUSIC algorithm
in O(M log(d)) where d is the desired fingerprint resolution.

We now present our main result that solves Problem 1
in the problem statement (Sect. 3). The following theorem
says the expected ¢;’s of legitimate nodes approach 1, while
those of spoofers approach 0, allowing us to discern them
under well-defined assumptions: (A.1) The signal paths are
independent. (A.2) Errors in azimuth and polar angles are
independent. (A.3) The clients transmit enough packets to
emulate a large antenna array (in practice, 25-30 packets per
second).*

4 This is a mild requirement since 25-30 packets can be transmitted in
tens of milliseconds, even at the lowest data rate of 6Mb/s of 802.11n
Wi-Fi.
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Algorithm 1 Algorithm to Compute Client Confidence Metric

> Input: Ratio of Channels fl,-l and SNR
> Output: Confidence Metric, «; for client i
> Step (1): Measure fingerprints for client i
for/=1,...,mdo

for ¢ € {0°,..., 360°}; 0 € {0°, ..., 90°} do

Find Fj; (¢, 0) using measured h;; (Eq. 1)

end for
end for
> Step (2): Measure variances in peak locations using SNR
062 = 0¢2) = Apply Lemma 1 SNR
> Step (3): Find honesty, similarity and confidence metric
Bi = Apply Definition 3 using 002, aq%, peaks of Fj;
for j ={1,...,c}\{i} do

vij = Apply Definition 4 using 002, aq%, peaks of Fjj, Fj
end for

aj = Bi [T (1 —vij)

Theorem 1 Consider a network withm servers and c clients.
A new client i either: (1) spoofs s clients reporting a random
location, potentially scaling power, or; (2) is a uniformly
randomly located legitimate client. Let aspoof, Qlegir be the
confidence metrics in either case. Assume that the client
obtains its signals from servers along k paths (where the
number of paths k is defined by Eq. (1) in Sect. 4). Under
A.1-A.3, the expected aspoof, Qegir are bounded by:

m
E[Olspoof] = [\/%K} [2mkogo¢]5

mk
Elojegir] = 1 — Cm6'96¢ I:\/ZGQO(Z,K] 6)

2
W2+ D),
ances defined in Lemma 1 that depend on signal-to-noise

ratio (the latter include measurement error in reported loca-
tions).

where Kk = ( 09, 0g, Oy, Oy are the vari-

Proof Sketch To give some intuition on why the theorem
holds, we provide a brief proof sketch (proof in supplemen-
tary text Gil et al. 2015a). To begin with, notice from their
definitions that both the honesty metric 8; and confidence
metric y;; inspect peaks in fingerprints Fj; (Lemma 1). For
the honesty metric §; of a legitimate node, this peak location
should be normally distributed (subject to noise, measure-
ment error) around the reported location. For a spoofer that
reports a random location, the peak location is uniformly
distributed. A similar (but inverse) argument holds for y;;.
Hence, we simply need to show is that the definitions of
Bi and y; which are both products of the form g(X) can
be bounded in expectation if X is uniform or normally dis-
tributed.

To this end, consider two random variables u and v which
are respectively uniform and normally distributed between 0
and 27 with mean 0 and variance o2. Let § = /20 (In [%)0‘5,

@ Springer

the value at which the minimization in g(x) is triggered.
E[g(v)] and E[g(u)] are as follows:

S -5
Elg()] = / f(x;0,0%)dx++/87 / [f(x; 0; 02)Pdx

/ f(an)dx_eﬁ<0f)zl—a @)

where erf(-) is the well known Error function and using 1 —
erf(x) < e Similarly, we can evaluate E[u(n)] as:

N
E[gw)] _/ zidx+2~/_ —f(x 0; 02)dx

=2 erf(w))fﬁk ®

By Assumptions A.1-A.3, we can apply these bounds to
write the expectation of the honesty metric 8; as a product
of those of the independent variables:

ElBspoos] = [ [ Elg(u: 0, 6)1E(g(u; 0, 67)]
l

m
< |:,/6'96‘¢Ki|

ElBregir] = [ | Elg(; 0, 6)1E[g(v; 0, 67)]
1

>1-— m696¢

Applying a similar argument, the similarity metric y is:

k
ElYspoor] = [ | ELF (v 0,205) £ (v; 0, 204)]

p=1
> 1 —2mkogoy

k
ElYiegis] = [ | Elg(u; 0,205)g(u; 0, 20)]
p=1

mk
< [w/2<790¢/c]

Combining the above equations, we prove Eq. (6). O

A natural question one might ask is if the above lemma
holds in general environments, where its assumptions A.l1-
A.3 may be too stringent. Our extensive experimental results
in Sect. 9 show that our bounds on o approximately pre-
dict performance in general environments. Further, Sect. 9.1
shows that results from an anechoic chamber, which emulate
free-space conditions where the lemma’s assumptions can be
directly enforced, tightly follow the bounds of Lemma 1.

In sum, one can adopt the above lemma to distinguish
adversarial nodes from legitimate nodes, purely based on
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«. However, an interesting alternative is to incorporate o
directly into multi-robot controllers to give provable service
guarantees to legitimate nodes. The next section shows how
o readily integrates with robotic coverage controllers, in par-
ticular.

6 Threat-resistant locational coverage

This section describes how our spoof detection method
from Sect. 5 integrates with well-known coverage controllers
from (Cortes et al. 2004; Schwager et al. 2009a, b). The area
coverage problem deals with positioning server robots to
minimize their Euclidean distance to certain areas of inter-
est in the environment. These areas are determined by an
importance function p(gq) that is defined over the environ-
ment Q C R3 of size L(Q). For our coverage problem, the
peaks of the importance function are determined by client
positions P, e.g., p(q, P) = pi(q) + --- + pc(q) where
pi(q) quantifies the influence of client i’s position on the
importance function. Using (Cortes et al. 2004; Schwager
et al. 2009a,b), server robot positions optimizing coverage
over p(q, P) will minimize their distance to clients.

To account for spoofed clients, we modify the importance
function p(q, P) using the «; for each clienti € [c] that is
computed by Algorithm 1. E.g., we can multiply each client-
term in p(gq, P) by its corresponding confidence weight:
p(q, P)e = a1p1(q) + - - + acpc(q). Given the properties
of these weights derived in Theorem 1, i.e., o; is bounded
near zero for a spoofed client and near one for a legitimate
client, the effect of multiplication by the «’s is that terms
corresponding to spoofed clients will be bounded to a small
value (see Fig. 5); providing resilience to the spoofing attack.

For simplicity, we assume the importance function p(g) is
static (from Cortes et al. (2004)) and «’s from Algorithm 1 are
computed once, at the beginning of the coverage algorithm.
We note that our approach readily extends to the adaptive case
in Schwager et al. (2009a,b) when the importance function
(and location of clients) change, by having the service robots
exchange their learned importance function. This in turn can
trigger a re-calculation of « values.

We now show that computed server positions are impacted
by spoofers to within a closed-form bound, that depends
on problem parameters like signal-to-noise ratio. Theorem 2
below solves Problem 2 of our problem statement (Sect. 3).

Theorem 2 Let X be a set of server robot positions and
P = SUS be a set of client positions where S is the
set of spoofed client positions, and S is the set of legit-
imate clients. The identities of the clients being spoofed
is assumed unknown. Let {ay, ..., a;} be a set of confi-
dence weights satisfying Theorem 1 and assume a known
importance function p(q, P) = p1(q) + - - + pc(q) that is
defined over the environment Q C R of size D(Q). Define

- . @ legitimate client
@ legitimate client .

Cluster of
spoofed clients

(]
: spoofer . . .
@ legitimate client e o

Fig. 5 Coverage guarantee: an € ball around the ground-truth centroid,
C Viegitimate > is shown as a circle with radius epsilon. Theorem 2 finds € (P)
so that server positions remain in this ball in the presence of spoofed
clients

Cv = {xi“, ..
mized over p(q, S), i.e., where there are zero spoofed clients
and Cy, to be the set of server positions optimized over
p(q, P)o = a1p1(q) + - - - + e pc(q) where there is at least
one spoofed client, i.e., |S| > 1. If {ay, . . ., a.} satisfy Theo-
rem I, we have that Vx € Cy, there exists a unique y € Cy,
where in the expected case dist(x,y) < €(m,s, 0y, 09, k)
where

., Xy} to be the set of server positions opti-

€ =max {[ G964k 1" [2mkogoy]’, cmbgbyg [,/2090¢K]mk}

x L(Q)

andm, s, 04, 09, kK are problem parameters as in Theorem 1.

Proof We make an important observation that Ee;] < a if
client i is a spoofed node, and E[«;] > b otherwise; hence:

(g, P)o = a(p1(q) +--- + ps(q)) + b(ps11(q)
+ -+ pc(q))

is the expected maximal effect that the presence of spoofed
clients can have on the importance function. Intuitively, in the
expected case, all spoofed clients have a weight of at maxi-
mum a and all legitimate clients have a reduced weight of at
minimum b. Using this observation we can bound the influ-
ence of the spoofed clients on computed server control inputs
(see Fig. 5). Specifically, recall from Cortes et al. (2004) that
the position control for each serveris: u; = —2My (Cy —c¢y),
where My = [, p(q)dq. Cv = g [y ap(q)dq and V
is the Voronoi partition for server / defined as all points
g € Q with dist(q, x;) < dist(q, xg) where g # [. Using
the importance function from above we can write Cy, =
M;va (aCyg + bCy, ) where Cyy is the component of the cen-
troid computed over spoofed nodes and C', is the component
of the centroid computed over legitimate nodes and My, is
defined shortly. We rewrite Cy, as a perturbation of the cen-
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troid over legitimate nodes as Cyg = Cy, + v||e| where v is
an arbitrary unit vector and the magnitude of e can be as large
as the length of the operative environment,||e|| < D(Q). Let
the total mass be T = My, + My,. We can write a simi-
lar expression for the mass My, using the bounds a and b as

My, = bT +(a—b)My, . Substituting these expressions into
Cy, +bvle|

Cy,, and simplifying gives Cy, = BT R a—b) My - Combining
L

this expression with the server control input:

up =k ([(@+b)Cv, — pil+blellv) ©))

where k = —2(bT + aMy,). If (a + b) = 1, this control
input drives the server robot / to a neighborhood of size € =
b|le|l < bD(Q) centered around the centroid C;, defined over
the legitimate clients. So if:

b = max {[,/696¢K]m[2mk090¢]s, cm&g&¢[,/2090¢/<]mk}

from Theorem 1, Eq. (6), then:

€ =max {[ 6964k " [2mkogog)®, cmbabyly/ 20904k ™ }

L(Q)

then we have (a + b) = 1 as desired, proving the lemma. O

7 Threat-resistant drone delivery

The previous section describes an application of « from
Sect. 5 as continuous weights to bound the influence of adver-
sarial clients. While this approach is useful for problems of
a continuous nature like coverage, other problems in control
require a more discrete approach. For example, in delivery
problems a decision must be made whether to visit a client
site or not since traversing a path some fraction of its length is
equivalent to not visiting the client site at all. In other words, it
is an inherently binary decision problem. This section shows
how the « weights from Sect. 5 can be used as a classifier
to select a subset of clients to be serviced, as in a drone
delivery context. The drone delivery problem is described in
Problem 3. The result below shows that the total path length
traversed in the drone delivery problem is impacted by the
presence of spoofed nodes to within a closed-form bound,
that depends on problem parameters like the signal-to-noise
ratio.

Theorem 3 Let x be the server robot positionand P = SUS
be a set of client positions where S is the set of spoofed client
positions, and S is the set of legitimate clients. The identi-
ties of the clients being spoofed is assumed unknown. Let
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AscTec
g Hummingbird
- Quadrotor

Fig. 6 Server platform: our aerial servers measure signal fingerprints
for each client using the two antennas shown

{ag, ..., ac) be a set of confidence weights satisfying The-
orem 1 and environment size D(Q). There exists a decision
threshold T > 0 such that the indicator function defined as:

1 a>T
Lo, = .
0 otherwise

for each clienti € {1, ..., c}, can be derived to determine
whether client i will be serviced by the delivery drone, i.e.,
Iy, = 1. Using this indicator function we define the total path
length covered by the servertobe L = Zp,' ep lo;dist(p;, x).
Let Liogir = Z[)[ES' dist(pi, x) be the total path length cov-
ered by the server in the optimal case of no spoofed nodes.
Then the difference in expectations is bounded such that:

|E[L] — E[Liegicll < max(|S|,|S)bD(Q)
= max(|S|, |S|)e

(10)
(1D
where € = bD(Q), b = max{[‘/&98¢lc]m[2mkoga¢]s ,

cm&g6¢[,/2090¢fc]mk}, and m,s, oy, 09,k are problem
parameters as in Theorem 1.

Proof Foreachclienti € 1, ..., c, let us denote:

1 o >T
IC(I' = .
0 otherwise

where T is a constant chosen so that:

1
Elo;] =/ P(o; > x)dx (12)
0

= P(o; > T) (using Mean Value Theorem)  (13)
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= E[ly] (14)

The last equation holds from the fact that /,, is an indicator
function for the event o; > T. Note that here we show the
existence of such a 7', but we do not find an analytical value
for T.In Sect. 9 however, we show the empirical performance
of the median threshold T = 0.5. We can then write the
expected total path length of the delivery drone as:

E[L]=E Z Iy, dist(p;, x) (15)
pi€P
= D Elly,Mdist(p;. x) (16)
pieP
= Y Elo;)dist(p;. x) (using Eq. 14) (17)
pi€P
= Y Eloi)dist(pi, x) + Y Eley)dist(p, x) (18)
pi€sS pIes

Recall from Theorems 1 and 2 that we can bound E[«;] as:

Elai spoof] < €/D(Q) Ele jegir] = 1 —€/D(Q)

where

€ =max {[ 6964k 1" [2mkogog)®, cmbabyly/ 20904k "™ }

x D(Q)

Applying the above bounds to Eq. (18), we have:

ElL] = Y dist(pi, x) + ﬁ 3 dist(pr, )

p,‘ES PIES
= E[Llegit] +[Sle

E[L]> ) <1 — ﬁ) dist(pi, x) + »_ 0

pi€S PIES

> E[Liegir] — |Sle
Combining the above two equations, we conclude that:
|E[L] = E[Liegir]| < max(|S|, |S])e

which proves the theorem. O

8 General multi-robot control problems

The above sections demonstrate two modalities of integrat-
ing the confidence metric « to secure multi-robot controllers:
either as a continuous per-agent weight, or as a means to

classify agents as legitimate or spoofed. Theorems 2 and
3 show theoretical bounds on the influence of adversaries
to controllers in the coverage and unmanned delivery con-
texts. Further, empirical results in Sect. 9 demonstrate that
a performs well when applied both in continuous and dis-
crete settings. However, it is natural to ask which of these two
modes ought be applied to secure any given multi-robot prob-
lem of interest, beyond coverage and unmanned delivery. In
this regard, we make the following observations:

8.1 Applying « as continuous weights

For many control objectives, the contribution of each agent
to the total optimization function is naturally expressed as
a continuous quantity. In these contexts, a natural modality
to integrate « is to incorporate it as a per-agent weight that
directly reduces the contributions of spoofed agents to the
optimization function. Doing so has two key advantages: (1)
It enables provable bounds in expectation on the influence
of spoofers to the multi-robot objective (akin to Theorem 2).
(2) Per-client weighting limits the extent to which spoofed
agents can influence the controller in the worst-case.

8.2 Applying « to decision-based problems

Unfortunately, many problems do not allow for a continu-
ous weighting since their objectives are inherently discrete
decisions on each agent in the network (e.g., unmanned deliv-
ery). In these cases, « can still be used to derive an indicator
function that classifies agents as legitimate or spoofed. This
modality still allows for obtaining bounds in expectation on
the influence of spoofers (akin to Theorem 3). However, by
the sheer nature of these problems, false positives or nega-
tives have a greater impact on the objective function in the
worst-case.

9 Experimental results

This section describes our results from an experimental
evaluation of our theoretical claims. We implemented two
aerial servers on AscTec Hummingbird quadrotors. Each
server (Fig. 6) was comprised of an AscTec Atomboard
onboard computer and two 2d Bi antennas, spaced 20cm
apart, attached to an Intel 5300 Wi-Fi card which estimates
the wireless channels from each client to each antenna via
the 802.11n CSI tool (Halperin et al. 2011). We note that
each aerial server only needs to perform a single spin to
simultaneously measure the fingerprints of all clients in our
experimental setup (Step 1 of Algorithm 1). Our clients were
ten iRobot Create robots, each equipped with Asus EEPC
netbooks and single-antenna Wi-Fi cards (Fig. 7). An adver-
sarial client forged multiple identities by spawning multiple
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Clients

Malicious Client

) - ..

spoofed clients .

Fig. 7 Hardware evaluation: depicts an example robot network within
our experimental setup with a quadrotor server and several mobile
clients

packets containing different identities (up to 75% of the total
number of legitimate clients in the system), and could use
a different transmit power for each identity. The adversary
advertised identities by modifying the Wi-Fi MAC field, a
common technique for faking multiple identities (Sheng et al.
2008).

Evaluation We evaluate our system in two environments:
(1) An indoor multipath-rich environment with walls and
obstacles equipped with a Vicon motion capture system to
aid quadrotor navigation; (2) An anechoic chamber to emu-
late a free-space setting that is particularly challenging to
our system. We estimated the average theoretical expected
standard deviation to be o9, oy of 0.7°. This was calculated
using Eq. (3) from Lemma 1 with A = 5.4 cm,r = 20 cm
and a worst case number of packets and SNR being M = 20
and 10 dB respectively. We note that our chosen antenna
spacing of r = 20 cm is small enough to be accommodated
on a quadrotor while still providing a high spatial resolution
by Lemma 1 and as shown in our experimental results on the
angular resolution of our confidence metric (Sect. 9.1; Fig. 8).
After including the standard deviation in reported location,
based on the known errors of our Vicon-based localization
framework, this increased the average 6¢, 6 by 2°. We com-
pare our system against a baseline that uses a Received Signal
Strength (RSSI) comparison (akin to Pires et al. 2004).

Roadmap We conduct four classes of experiments: (1)
Microbenchmarks to validate our client confidence met-
ric, both in free-space and multipath indoor environments
(Sect. 9.1). (2) Experiments applying this confidence metric
to quarantine adversaries (Sect. 9.2). Application of our sys-
tem to secure against Sybil attacks: (3) the coverage problem
(Sect. 9.3); (4) the drone delivery problem (Sect. 9.4).
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(a) Varying ¢ (Free-space) (b) Varying ¢ (Multipath)
Fig. 8 Co-aligned clients: we vary the angle ¢ between a legitimate
and malicious client, relative to a single server (as shown in Fig. 9b),
and plot « in a an anechoic chamber and b an indoor environment.
The minimum ¢ needed to distinguish between clients is only: a 3° in
freespace, b 0° in multipath settings

adversary

amunga]

wgTl

server robot

(a) Chamber

(b) ¢

Fig. 9 Microbenchmarks on «: a an anechoic chamber simulating
freespace. b We measure o while varying the angle between a legit-
imate and malicious client, relative to the robotic server

Table 2 Summarized classification performance: true positive rates
(TPR) and false positive rates (FPR) for classifying clients as spoofed,
when a < 0.5 in our system, and with a 2 dB minimum dissimilarity
for RSSI

Our system RSSI

TPR FPR TPR FPR
Static 96.3 3.0 81.5 9.1
Mobile 96.3 6.1 85.2 6.1
A mW 100.0 3.0 74.1 27.3

9.1 Microbenchmarks on the confidence metric

This experiment studies the correctness of our system’s
confidence metric «. Recall from theory in Sect. 5 that
«’s measured by a server robot distinguish between unique
clients based on their diverse physical directions and the pres-
ence of multipath reflections. Thus, a free-space environment
(i.e., with no multipath) is particularly challenging to our sys-
tem.

Method To approximate free-space, we measured o val-
ues in a radio-frequency anechoic chamber (Fig. 9a) which
attenuates reflected paths by about 60 dB, for a legitimate
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Fig. 10 Experimental evaluation of «: a in an anechoic chamber
approximating our assumptions A.1-A.3 (Sect. 1), o largely agrees
with theory. b In a typical multipath environment, experimental results
closely follow theoretical predictions. Data shows that « = 0.5 is a
good threshold value

and malicious client from one server robot 12 m away. We
also introduced a metallic reflector in this controlled setting,
to measure the contribution of multipath to . Next,ina 10 m
x 8 m indoor room (a typical multipath case), we measured
a’s from one server for up to ten legitimate clients and ten
spoofed clients.

Results In Fig. 10, the values of « in the anechoic cham-
ber tightly follow our theoretical bounds in Theorem 1.
As expected, our results in indoor multipath environments
exhibit a larger variance but follow the trend suggested by
theory. Further, we stress our confidence metric by isolating
the case of colinearity in both environments. We consider
a spoofing adversary initially co-aligned with a legitimate
client as the angle of separation, ¢, increases from 0° to 20°
relative to the server robot (Fig. 9b). Figure 8 depicts the
measured « values for the legitimate and spoofed clients. In
the anechoic chamber at ¢ close to 0°, the fingerprints of the
legitimate and adversarial nodes are virtually identical: each
has precisely one peak at 0°. Consequently, « for the legit-
imate node is much below 1, indicating that the legitimate
client is believed to be adversarial (i.e., the term (1 — y) in «
approaches zero in Eq. 2). However, « for the legitimate client
quickly approaches 1 atonly ¢ = 3° in the anechoic chamber.
In fact, « is virtually identical to 1 beyond 10°, indicating that
a single server robot can distinguish between closely aligned
legitimate and adversarial clients even in free-space. To eval-
uate the effects of multipath on the « values of coaligned
clients in a controlled manner, we positioned a small metallic
reflector several meters away from the two clients and server
in the anechoic chamber when ¢ = 0°. Figure 11 demon-
strates that the the additional reflected signal paths strongly
disambiguate the « values for coaligned clients. Specifically,
the term (1 — y) in Eq. (2) approaches zero only for the
adversary. Figure 8b depicts the larger separation of « values
for coaligned clients in a typical indoor setting compared to
free-space. As expected, multipath reflections from walls and

Fig. 11 Anechoic chamber multipath: we measure « for a spoofing
client coaligned with a legitimate client (¢ = 0°) in the anechoic
chamber before and after adding a reflector to introduce multipath. The
increased separation of « and lower standard deviation (shown as bars)
is depicted on the right

obstacles clearly distinguish spoofing clients from legitimate
clients even at ¢ = 0°.

9.2 Performance of Sybil attack detection

In this experiment, we measure our system’s classification
performance on legitimate and spoofed clients, in the pres-
ence of static, mobile, and power-scaling adversaries.

Method This experiment was performed in the multipath-
rich indoor testbed with walls and obstacles. Each run
consisted of one quadrotor server and randomly positioned
clients—either ten legitimate clients, or nine legitimate
clients and an adversary reporting two to nine additional
spoofed clients. Each Sybil attack was performed under three
modalities: (1) a stationary attacker with a fixed transmis-
sion power, (2) a mobile attacker (random-walk and linear
movements), and (3) an attacker scaling the per-packet power
by a different amount for each spoofed client, from 1 to
31 mW. We compare our system to a baseline RSSI classifier
using a thresholded minimum dissimilarity, a technique pre-
viously applied in static networks (Pires et al. 2004; Wang
and Yang 2013). Measured signal-to-noise ratios for clients
ranged from 5 to 25 dB. In our system, quadrotor servers
performed classification by applying a threshold using the
measured o values for each client.

Results In Fig. 12, we measure true-positives against
false-positives collected over multiple network topologies,
resulting in the well-known Receiver Operating Characteris-
tics (ROC) curves (Fawcett 2004). Our theoretical results
in Sect. 7 indicate that o measurements are suitable for
use in a thresholding classification context. Empirically,
Fig. 10 shows that a threshold of @ < 0.5 performs well
to classify clients as spoofed. Table 2 summarizes our per-
formance results when using this threshold for each of the
three attack modalities, compared to RSSI-based classifi-
cation where a 2 dB thresholded minimum dissimilarity
performed best.
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Fig. 12 Receiver operating characteristics: we measure ROC curves for adversaries which a are static; b scale power differently while spoofing
different clients; and ¢ are mobile. We compare the performance of our system against a baseline using received signal power

In particular, our classifier is robust to power-scaling Sybil
attacks (where RSSI performs poorly) since we use the ratio
of wireless channels in computing o (Sect. 4). Our client clas-
sifier exhibits consistent performance in both power-scaling
and mobile scenarios with a TPR &~ 96% and FPR =~ 4%.

9.3 Application to multi-agent coverage

We implement the multi-agent coverage problem from Cortes
et al. (2004), where a team of aerial servers position them-
selves to minimize their distance to client robots at reported
positions p;, i € [c]. We use an importance function
p(qg, P) = p1(q) + --- 4+ pc(g) defined in Sect. 6 where
each client term is a Gaussian-shaped function p;(g) =
exp(— % (g—pi)T (g — pi)) (Fig. 13b). An a-modified impor-
tance function is implemented as p(q, P)q a1p1(q) +
.-+ 4+ acpc(q) where the o terms are computed using Algo-
rithm 1 (Fig. 13c¢).

Method This experiment was performed in the multipath-
rich indoor testbed. For each experiment we randomly place
three clients in an § m x 10 m room with two AscTec quadro-
tor servers. Figure 13a—c shows one client-server topology
where an adversary spoofs six Sybil clients. Upon conver-
gence, we measure the distance of each server from an
optimal location in 3 scenarios: (1) a naive system with no
security, (2) an oracle which discards Sybil clients a priori,
and (s3) our system.

Results Figure 13a—c depicts the converged locations for a
candidate topology in the above three scenarios. We observe
that by incorporating o weights in our controller, our system
approximates an oracle’s performance. Figure 13d demon-
strates the ability of our system to bound the service cost to
near optimal even as additional spoofers enter the network
(comprising up to 300%).

@ Springer

Aggregate results Across multiple topologies and 12 runs,
for a system with no security the maximum distance from
each quadrotor to an oracle solution is on average 3.77 m
(SD 0.86). In contrast, our system achieves a 0.02 m (SD
0.02) average distance from an oracle solution (Fig. 14).

9.4 Application to unmanned delivery

This experiment applies our Sybil attack detection algo-
rithm in the context of unmanned delivery. Specifically, we
consider a delivery quadrotor that iteratively visits multi-
ple client locations from a depot to deliver packages, for
instance delivering relief material in a disaster area. An adver-
sarial power-scaling client spawning multiple non-existent
client locations could readily disrupt such a system, drawing
the delivery robot away to service regions where no clients
exist. We study the effectiveness of our system in guarding
against such attacks and compare it against the RSSI baseline
(Sect. 9.2).

Method Multiple heuristics exist for approximating opti-
mal solutions to unmanned delivery problems which mini-
mize distance, payload, or fuel usage (Laporte et al. 1988;
Pavone et al. 2011). We use a simple distance metric—the
shortest quadrotor flight path which visits all client locations
iteratively, returning to the depot each time—and deploy a
system that uses our binary classifier based on signal fin-
gerprints to filter malicious clients. We compare our results
both against a baseline classifier based on RSSI as well
as a naive system which visits every reported client loca-
tion. We repeat the experiment across ten randomly chosen
topologies. Figure 14a depicts a candidate topology where
two legitimate clients report their positions p; and p; to a
quadrotor beginning its delivery route at location x, while a
malicious client at position p3 reports six (inclusive) false
client locations. The average minimum trajectory length for



Auton Robot (2017) 41:1383-1400

1397

N
o

(a) No security (b) Oracle
Fig. 13 Experimental results for Sybil attack in multi-agent coverage:
depicts the total distance of converged quadrotor server positions (white
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Fig. 14 Path of delivery robot: depicts sample trajectories of a deliv-
ery robot iteratively visiting a reported client location and returning
to a depot among two legitimate clients and an adversary spoofing six

the quadrotor to visit all 8 clients across our topologies is
41.78 m.

Results Figure 14a—c depicts candidate trajectories of the
quadrotor in the three scenarios: (1) A naive system with-
out cyber-security; (2) The RSSI-baseline; (3) Our system.
In the RSSI baseline, the quadrotor compares the received
power per packet for each client, but misclassifies a sub-
set of the spoofed clients as legitimate (owing to noise),
resulting in the quadrotor traveling a mean path length of
20.92 m. In contrast, our system benefits from the large mar-
gin of separation when classifying clients using their « value
(as in Sect. 9.2), with the quadrotor’s resultant mean path
length of 12.05 m performing close to an oracle system’s
ground truth trajectory length of 10.91 m across topologies
(see Fig. 14d).

10 Conclusion

In this paper, we develop a new system to guard against
the Sybil attack in multi-robot networks. We derive theo-

Method of computing o

(c¢) Our System (d) Aggregate Results

clients, for: a a naive system with no security; b a baseline classifier
based on received signal power; and ¢ our system. d Depicts the mean
and standard deviation of total trajectory lengths across ten scenarios

retical guarantees on the performance of our system, which
are validated experimentally. While this paper has focused on
coverage and unmanned delivery, our approach can be read-
ily extended to secure other multi-robot controllers against
Sybil attacks, e.g., applications within the Vehicle Rout-
ing Problem (Laporte et al. 1988; Pavone et al. 2011), in
search-and-rescue tasks (Lin et al. 2009), and in formation
control (Wang et al. 2007). We note for future work that our
method of detecting spoofed clients is applicable to servers as
well, since they also communicate wirelessly. Additionally,
while this paper addresses Sybil attacks in which spoofed
clients assume unique identities, our approach generalizes to
defense against replay attacks (Feng et al. 2011; Miao et al.
2013) where adversaries imitate existing legitimate clients in
the network. Since our approach is based on the fundamental
physics of wireless signals, we believe that it also applies to
other Wi-Fi based security issues in robot swarms such as
packet path validation (Liu et al. 2008) and detecting packet
injection attacks to name a few.
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