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Abstract— We consider the task of providing commu-
nication coverage to a group of sensing robots (sensors)
moving independently to collect data. We provide commu-
nication via controlled placement of router vehicles that
relay messages from any sensor to any other sensor in
the system under the assumptions of 1) no cooperation
from the sensors, and 2) only sensor-router or router-
router communication over a maximum distance of R

is reliable. We provide a formal framework and design
provable exact and approximate (faster) algorithms for
finding optimal router vehicle locations that are updated
according to sensor movement. Using vehicle limitations,
such as bounded control effort and maximum velocities of
the sensors, our algorithm approximates areas that each
router can reach while preserving connectivity and returns
an expiration time window over which these positions are
guaranteed to maintain communication of the entire sys-
tem. The expiration time is compared against computation
time required to update positions as a decision variable
for choosing either the exact or approximate solution for
maintaining connectivity with the sensors on-line.

I. INTRODUCTION

We wish to provide communication coverage to mo-
bile sensing robots, or “sensors”, moving autonomously
according to unknown trajectories by using a team
of routing vehicles whose movement we can control.
We are interested in maintaining a network such that
each sensor can send and receive messages to and
from all other sensors in the system but we do not
assume sensor cooperation with the routers to maintain
the network. This is an important assumption as it a)
allows the mobile sensors maximum freedom to change
their motion plans as necessary, for example when
exploring unknown environments for search and rescue
missions, and b) does not require sensors to maintain
any information about other sensors in the network,
similar to cell phone clients who can reach anyone in
their network without having to know their locations.
However, this also makes communication maintenance
significantly more challenging. In this spirit, we assume
that 1) every router can communicate with any other
router or sensor at a distance of at most R, where R is
a specified communication radius and 2) a sensor can
only communicate reliably with its nearest router.
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Fig. 1: The sensor p can communicate with a sensor q through
the path of router vehicles (centers) p, c1, c2, c3, q. The minimum
required transmission power r for this communication is the longest
edge (c2, c3) in this path.

We aim to develop on-line position control for the
router vehicles such that they provide communication
over the entire system, and such that the amount of
time that these positions are guaranteed to maintain a
connected network is maximized for the given commu-
nication radius and vehicle velocities.

In order to achieve the goal of controlling router
vehicles to provide communication under these assump-
tions we must address questions such as, given n
mobile sensors can we allocate k mobile routers such
that there exists a connected communication network?
How would we compute this allocation and moreover
how can we maximize the amount of time that we
are guaranteed to preserve mutual connectivity despite
unpredicted sensor movement? What are the tradeoffs
between the communication radius R, number of mobile
routers k, maximum sensor velocities, and their moving
freedom? In this work we define a formal framework,
design provable algorithms, and provide empirical case
studies that aim to answer these types of questions.

A. Summary of Problems Addressed

For a communication radius of R, a set C of router ve-
hicles, and a set S of sensors, communication is feasible

if every pair of sensors can mutually communicate using
C. Communication occurs via message passing from a
sensor p to its nearest router c1, and then via multi-
hop through the connected network of routers c2, c3, · · ·
before being delivered to its destination sensor q. The
communication radius is the longest communication
edge between any two vehicles in this routing path; see
Fig. 1. We consider communication to be feasible for a
configuration C if every pair of sensors p, q have such
a path that requires a communication radius of no more
that R. This constitutes our first problem.

Problem 1 (feasibility problem): Given R > 0, a



configuration C and S of router and sensor positions,
is communication feasible?

Note that the solution depends on all the possible
spanning trees of the set C. If the required communica-
tion radius is actually r where r < R, this implies that
sensors p and q can move while still preserving mutual
connectivity which motivates the problem of finding the
minimum such r:

Problem 2 (k-connected center problem): What is
the minimum value of R such that communication is
feasible for a set of router positions C (centers) given
a set of sensor positions S, and what is that C?

We note that even if the number of centers and mobile
sensors is the same (n = k) the solution is not trivial due
to the interdependencies arising from the connectivity
requirement of the centers. Finally, we incorporate the
dynamics of the vehicles, i.e., control effort limitations
for the routers and maximum velocities for the mobile
sensors, as well as the maximum communication radius
R to answer the following question.

Problem 3 (reachability problem): Suppose that we
are given the current position of a set C of routers,
their allowed control inputs, current sensor positions S
and their maximum sensor velocities. What areas can
each sensor and router move to (reach) while keeping
the network connected? For how long can we guarantee
that a connected configuration is maintainable?

B. Results Snapshot

We develop algorithms that compute router vehicle
positions that provide a connected communication net-
work if such a configuration exits, and that maximize
a sufficient condition for reachability for given vehicle
velocities. The feasibility problem can be answered
in O(n + (k log k)4/3) for sensors in R

3 and O(n +
(k log k)) in R

2 for a given C by the observation that an
Euclidean minimum spanning tree for C (that minimizes
the sum of the length of edges) also minimizes the
longest edges among all spanning trees of C [1]. For n
mobile sensors and k centers our algorithms provide: 1)
an exact solution C∗ with minimum communication cost
h∗ in nO(k) time, or 2) a faster approximate solution that
takes (kǫ )

O(k) time and returns a solution C with cost
h such that h ≤ (1 + ǫ)h∗, where ǫ > 0 is an input pa-
rameter depending on the desired solution accuracy. We
provide an expiration time, or time window, over which
a configuration C of communication vehicle positions
is guaranteed to maintain connectivity of the network
given control input limitations and maximum sensor ve-
locities. This expiration time compared against required
computation time provides a lower bound estimate of
whether there is enough time to compute the exact
solution, or whether the approximation algorithm should
be used (see Fig. 3). Intuitively, for large systems or for
cases where the positions of the routers must be updated

quickly, the faster approximation algorithm is used.
More generally, we show that α-approximations for the
traditional k-centers problem are (3 + 2α) approxima-
tions for the k-connected centers problem. Since there
exist fast O(nk) time 2-approximation algorithms for
the k-center problem, we thus obtain 7-approximation
algorithm for the connected k-center problem as well.

Our empirical results show that for a scenario of 5
sensors moving at a constant 1m/sec and 2 routing
vehicles moving at 1.5m/sec, the expiration time is
te > 60sec and the minimum communication cost
is computed in 38sec using Matlab and CVX [2] on
an Intel Core 2 Duo 2.4GHz processor. As sensors
move towards the communication limits a switch is
made to the approximate version of the algorithm which
computes a solution in 3sec with cost that is only 13%
larger than the minimum communication cost.

C. Related Work

Both centralized and decentralized approaches for
connectivity maintenance amongst single or multiple
moving robots have been investigated in the literature,
mostly where control or cooperation of vehicles in the
system is assumed [3]–[6]. Connectivity for an adver-
sarial agent is investigated in [7] for a single agent that
must be tethered to a base station. The authors’ previous
work, [8] and [9], provides distributed approaches for
communication and connectivity problems but in that
work sensors are assumed to be stationary. The paper
by [10] is more closely related to our current approach
in that reachability between agents is investigated. How-
ever the element of uncontrolled motion in the current
paper precludes fixed communication assignments be-
tween agents that can be maintained throughout. Instead,
we leverage results from computational geometry to han-
dle these changes in topology. This paper uses reductions
inspired by the classic k-center problem, which, as noted
in previous section, has a simple greedy 2-approximation
algorithm in O(nk) time [11]. Coresets can be viewed
as a general approximation concept for more efficient
computation of NP hard problems and includes appli-
cations from random sampling, feature extraction, and
more. See a comprehensive survey on this topic by
Agarwal, Har-Peled, and Varadarajan [12]. The coresets
that most relevant in our context are for the k-center
problem [13] and for bi-criteria approximations [14].
Reachability techniques have been used for control of
complex dynamic systems [15], [16], and in achieving of
feasibility of a target state over long or infinite horizons
as in the seminal work of [17].

II. PROBLEM STATEMENT

We wish to provide communication coverage to n
mobile sensors with positions at time t, sjt ∈ R

d, that
are moving over unknown trajectories. We assume the
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following model for sensor position updates, the input
w is unknown but bounded to the uncertainty set W :

sjt+1 = sjt + wj , j ∈ {1, . . . , n}, (1)

wj ∈W = {w| ‖w‖ ≤ vS}. (2)

We provide this communication using a set of mobile
router vehicles with positions ciτ ∈ R

d, i ∈ {1, . . . , k},
whose movement we can control via the input u. The
set U specifies the vehicle control limitations:

ciτ+1 = ciτ + uiτ , i ∈ {1, . . . , k}, (3)

uiτ ∈ U = {u| ‖u‖ ≤ vC} (4)

We use different notations t and τ where t is time in
seconds, and τ is the time in number of iterations for
any algorithm that updates the router positions. We can
think of iterations as a sequence of times (τ1, τ2, . . .)
where τi+1 = ti + B and ti is the time in seconds of
the current position update for the router vehicles and
B is the elapsed time in seconds until the next update.
As a shorthand, we will use the notation τ and τ + 1
to denote two consecutive updates. We denote the set of
router positions at iteration τ as Cτ and the set of sensor
positions at time t as Pt, and assume d is a constant.
For brevity and clarity in the remainder of the paper we
use the names router vehicle and centers synonymously.

We would like to keep the heterogeneous system in a
connected configuration. In order to precisely define a
connected configuration, we first introduce a minimum

bottleneck spanning tree or MBST
Definition 2.1 (MBST): Given a set C ⊆ R

d, a span-

ning tree of C is a tree G(C,E) that connects all
the centers (points) in C, whose edges are E ⊆ C2.
A bottleneck edge is the longest edge in a spanning
tree, i.e, that maximizes dist(c, c′) over (c, c′) ∈ T . A
spanning tree T ∗ is a minimum bottleneck spanning tree

(or MBST) of C, if C does not contain a spanning tree
with a shorter bottleneck edge. We define b(C) to be the
length of the bottleneck edge of the MBST of C, i.e,

b(C) := max
(c,c′)∈T∗

dist(c, c′). (5)

The length of the minimum bottleneck edge b(C),and
the maximum distance between any sensor to its closest
center determine the smallest communication radius, r∗,
needed to achieve a connected system. If this value
is smaller than the maximum allowed communication
radius R, then the configuration is connected. Formally,

Definition 2.2 (Connected Configuration): Let P ⊆
R

d and k ≥ 1 be an integer. Let

r(P,C) := max
s∈P

Dist(s, C) (6)

where Dist(s, C) = minc∈C dist(s, c) is the closest
point to s in the set C. For a given set C, define

rb(P,C) = max{r(P,C), b(C)} (7)

If rb(P,C) ≤ R then sets P and C are in a
connected configuration. We denote the set of connected
configurations for P and C as Ω(P,C). Moreover, if a
connected configuration for a set P exists for some C

then a connected configuration is feasible.

We would like to address the problems of 1) evalu-
ating whether a connected configuration is feasible for
a set P and C, 2) finding the minimum value rb(P,C)
such that the system is connected and 3) choosing a
new set positions Cτ+1 such that the centers maintain
feasibility of a connected configuration from one iter-
ation Cτ to the next Cτ+1 given the vehicle dynamics
models from (4) and (2) and the communication radius
R. We formalize the third question outlined above by
using terminology from reachability theory. In particular,
we define reachability of a set X∗

Definition 2.3 (Reachability of a set X∗): We use
the definition of reachability of a set from [17] for a
one-step horizon where a sufficient condition for X∗ to
be reachable from a state x (where the state evolution
is given by equations of the form (2) and (4)) is x ∈ X
where X is defined as

E = {x|x+ w ∈ X∗∀w s.t. ‖w‖ ≤ vS} (8)

X = {x|x+ u ∈ E for some u, ‖u‖ ≤ vC} (9)

Specifically, the condition that x ∈ X asserts that
for all uncontrolled but bounded inputs w to the system
where ‖w‖ ≤ vS , there exists some permitted control
u, ‖u‖ ≤ vC , such that the state x can remain in the
desired set X∗.

Therefore we wish to choose Cτ+1 such that a con-
nected configuration Ω(Pτ+1, Cτ+1) is reachable. This
formulation also allows us to identify and maximize the
expiration time for a set of positions C:

Definition 2.4 (Expiration time te): For given prob-
lem parameters vS , vC , R, and current vehicle positions
P,C, we define the expiration time

te = TE(P,C, vS , vC , R) (10)

to be a lower bound on the time window over which
the set of positions C is guaranteed to maintain C and

P̃ in a connected configuration, for any set of positions

P̃ that evolves from P using the update equations in (2).
Using the expiration time, we choose our update time
according to τl+1 − τl ≤ te.

We answer questions about feasibility and minimum
radius r in Section III-A, and questions about reacha-
bility and expiration time in Section III-B.

III. CONTROLLER DEVELOPMENT

In this section we derive an algorithm for finding
optimal placement for the k centers that provides a
connected configuration for n mobile sensors assuming
only sensor to center and center to center communica-
tion. This algorithm is centralized and assumes access
to all current sensor positions at each update time in
order to allow maximum flexibility in network structure
change due to sensor movement. We develop a novel
formulation for this problem, namely the k-connected
centers problem. We use tools from reachability analysis
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to incorporate unknown sensor motion, control input
limitations for the router vehicles, and communication
range specifications to provide a solution that is guaran-
teed to be both connected and feasible over a computable
time window, te, that we maximize.

A. k-Connected Centers

The k-center is a set C∗ of k centers (points) in R
d

that minimizes, among all such k centers, the maximum
distance from every point P to its nearest center in C∗.
Unfortunately, k-centers does not solve the problem of
providing a fully connected network over all sensors and
communication vehicles. We modify the k-center prob-
lem to also minimize the maximum inter-communication
vehicle distance. Since it is prohibitive and unnecessary
to constrain the communication vehicles to a fully con-
nected system, we instead define a spanning tree over
this set:

Definition 3.1 (k-Connected Centers): The k-
connected centers is a set C∗ that minimizes

rb(P,C) := {max{r(P,C), b(C)}}
for a given input set P over every set C of k points
in R

d, where r is defined in (6), and b(C) from Equa-
tion (5) is defined over all spanning trees.

Once connectivity assignments are made between
sensors and centers (for example, the two outer loops
in Algorithm 1), we can define a connectivity neighbor-
hood:

Definition 3.2 (Connectivity Neighborhood ): For a
given configuration of centers Cτ at iteration τ , a center
ci has an assignment Qi of sensors where Qi ⊂ P and
possibly a connectivity edge with one other center cj
such that cj = T (ci). The notation T (ci) is used to
denote connectivity constraints between centers and is a
directed constraints meaning that T (ci) = cj does not
imply T (cj) = ci. In fact we avoid this in order to pre-
vent dependency cycles. The connectivity neighborhood
N (ci) of ci is the set of vehicles that a communication
vehicle is assigned to maintain connectivity to. Although
connectivity constraints and neighborhoods are directed,
communication is undirected, determined only by inter-
vehicle distance.

B. Reachability

The solution to the k-connected sensors problem does
not account for uncertain sensor movement which may
render a connected configuration infeasible given the
control limit placed on the centers. Our key insight is
to abstract the a priori unknown sensor movement as
a disturbance on the system of communication vehicles
and apply tools from reachability analysis. Taking this
perspective, we attempt to use control of the commu-
nication vehicles to maintain a connected configuration
over a span of te seconds which is an expiration time

window that we maximize. We note that reachability

tools are typically applied over a horizon of more than
1, however our focus is to provide sensors maximum
freedom in their motion and thus we allow for changes
in network topology at each iteration.

We derive the form of the reachability matrix K for
our problem. For a general derivation of this reachability
matrix the reader is referred to [17]. We define our target
set as X∗ = {x| ‖x‖ ≤ R} where x is the relative
state between a center and its connectivity neighbor
from Definition 3.2, specifically, x = (p − ci) for
p ∈ N (ci). Therefore (p − ci) ∈ X∗ implies that
ci and its connectivity neighbor p are connected. The
idea is the following: given a sensor position st and
a disturbance set W from (2), we want to find all
the locations for a center c such that the relative state
(st − c) +W ⊂ X∗. In particular we want to know all
c for which (st − c) ∈ Et+1 where

Et+1 = {x| x+ wt ∈ X∗ ∀wt ∈W} (11)

This set represents all the locations for a center such
that regardless of the sensor trajectory, connectivity
is maintained. Additionally, we must account for the
control limitations on our communication vehicles. Not
all positions c such that (c−st) ∈ Et+1 are attainable by
a center with position ct at time t due to the constraint
that ‖ct− ct+1‖ ≤ vC . Therefore the reachability set X
takes the form:

Xt = {xt| xt + ut ∈ Et+1 for some ut ∈ U} (12)

Where U is the set of allowable control actions from
Equation (4). While Xt is a convex set, it is not
ellipsoidal in general. Since ellipsoidal sets provide
simple quadratic constraints, an approximation to this
set is desirable for computation. In [17] it is shown
that the set Xt has an inner ellipsoidal approximation
X̄t ⊂ Xt and that (st − ct+1) ∈ X̄t is a sufficient
condition for connectivity in the next timestep such that
(st+1− ct+1) ∈ X∗. Therefore if for every center cit at
time t, we satisfy (pt− cit+1) ∈ X̄t for all connectivity
neighbors pt ∈ N (cit) then we maintain connectivity
over the entire system of centers and sensors over the
next iteration.

The set X̄t can be described by the d×d reachability

matrix K. Problems with velocity bounds of the form (4)
and (2) permit a diagonal structure of the matrix K from
which we can derive a simple formula for assessing the
feasibility of maintaining a connected network for any
C and P given the problem parameters vS , vC and R:

X̄t = {xt| xT
t Kxt ≤ 1},K = diag(ν) (13)

ν =

{ 1
(1−β)(R2− 1

β
v2

S
)+v2

C

if xt = st − ct
1

(1−β)(R2− 1

β
v2

C
)+v2

C

if xt = T (c)t − ct

Where 0 < β < 1 is an approximation constant. We can
now formally define the reachable k-connected centers
problem:

Definition 3.3 (Reachable k-Connected Centers):
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Let P be a given set of sensors and K be a reachability
matrix. Let C = {c1, · · · , ck} be a set of centers,
each has a maximum velocity vC > 0. A reachable

k-connected center from C is a set C∗ = {c∗1, · · · , c∗k}
where ‖ci − c∗i ‖ ≤ vC for every i = 1, · · · , k.
Moreover,

C∗ ∈ argmin
C′,δ

(rb(P,C ′) + δ) s.t. (14)

(c− p)TK(c− p) ≤ δ, ∀c ∈ C ′, ∀p ∈ N (c).

Here, K is the reachability matrix from (13), and N (c)
is the communication neighborhood from Definition 3.2.
A solution with δ ≤ 1 indicates that a reachable
configuration is feasible.

From the matrix K we can derive the expiration

time or time, in seconds, for which we are guaranteed
connectivity between a center c and its connectivity
neighborhood:

te = max

(

min
c∈C,p∈N (c)

rχ − ‖c− p‖
v

, 0

)

. (15)

Here v = {vC , vS} where vC is used if the vehicle p is
a neighboring center so that p = T (c), and vS is used
if p is a sensor so that p ∈ P . Also, rχ = 1√

λ
and λ is

the largest eigenvalue of K.
Lemma 3.4: Given a set of sensors with positions

P ⊆ R
d and maximum velocity bound vS ∈ R, a

communication radius R, and a velocity limitation vC ∈
R for each center, we have that centers with positions
C ⊆ R

d will maintain a connected configuration (Defi-
nition 2.2) with P over te seconds for any sensor motion
satisfying (2) if the convex condition

(ci − p)TK(ci − p) ≤ 1, ∀ci ∈ C, ∀p ∈ N (ci) (16)

holds. Where te is the expiration time given by Equa-
tion (15), the matrix K is positive definite, of appropriate
dimension, depends on vS , vC and R, and is calculated
for our problem in (13), and the connectivity neighbor-
hood N (ci) is from Defintion 3.2.

Proof: The condition (16) is calculated using ellip-
soidal approximation methods from [17]. The collection
of connectivity neighborhoods N (ci) for all ci ∈ C is
guaranteed to cover all sensors and connect all centers
by the k-connected center formulation. Therefore sets
P and C satisfying Equation (16) maintain a connected
state over the entire network since this implies that
(p − ci) ∈ X̄ ⊂ X for all ci, which is a sufficient
condition for connectivity by the description of the
sets (11) and (12). The amount of time (in seconds) that
a connected configuration is maintained for C is given
by the expiration time te that is computed from K. The
largest eigenvalue of K gives us a lower bound on the
radius rχi

of the reachability set for ci, and thus any
relative state (p− ci) with magnitude ‖(p− ci)‖ ≤ rχi

is guaranteed to remain connected, where p is in the
connectivity neighborhood N (ci) of ci. The minimum
value of te for a given C,P ,vS ,vC is given by (15).

C. Exact Algorithm for Reachable k-Connected Centers
We combine the results from the previous two subsec-

tions on k-connected centers and reachability analysis to
provide an algorithm for returning communication vehi-
cle placements that minimize the reachable k-connected
centers cost from (14). This solution is optimal for the
k-connected center problem and satisfies a sufficient
condition for reachability if δ∗ < 1 (see Algorithm 1).
Algorithm 1 can also be easily altered to only return
solutions that satisfy reachability. Since the reachability
condition from (16) involves an inner ellipsoidal approx-
imation for computational tractability, we point out that
there may exist configurations C∗ for P that do not
satisfy (16) but are reachable.

Suppose that we are given the partition of the input
set P into k clusters (one cluster per center in C∗),and
the pairs from the set 1, · · · , k that correspond to the
edges of a minimum spanning tree of C∗. Then, a k-
connected center set C∗ can be computed in polynomial
time using a convex program as in Algorithm 1. Using
exhaustive search on all candidate solutions, we can thus
compute C∗ in nO(k) time.

input : Set P of sensors, set C = {c1, · · · , ck} of
k centers, reachability matrix K ∈ R

d×d

from (13), vS and vC from (2) and (4)
output: Reachable k-connected center C∗ from C,

expiration time te, and reachability
parameter δ∗

for Every spanning tree T over k nodes do

for Every partition N (c1), · · · ,N (ck) of P do

(C ′, r, δ) ∈ arg min
C′={c′1,··· ,c′k},r,δ

r + δ s.t. :

‖c− q‖ ≤ r, ∀q ∈ N (c), ∀c ∈ C ′

‖c′i − ci‖ ≤ vC , i ∈ {1, . . . , k}
(c− q)TK(c− q) ≤ δ, ∀q ∈ N (c) ∀c ∈ C ′

if r < r∗ then

r∗ = r; C∗ = C; δ∗ = δ
end

end

end

te ← max
(

minc∈C,p∈N (c)
rχ−‖c−p‖

v , 0
)

,

v ∈ {vS , vC}
return : r∗, C∗, te,δ∗

Algorithm 1: Exact Algorithm for k-connected cen-
ters with Reachability

Theorem 3.5: Let P be a set of points in R
d and

k ≥ 1 an integer. Algorithm 1 provides an exact solution
to the reachable k-connected centers problem from Def-
inition 3.3, where the resulting set of centers C∗ is the
set of centers of cardinality |C∗| = k that minimizes the
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cost rb(P,C) over every set C of centers that satisfy the
constraints . Moreover, the configuration C∗ guarantees
connectivity over the entire heterogeneous network for
a minimum of te timesteps where te is the expiration
time for C∗ and is defined in (15). The algorithm runs
in nO(k) time.

Proof: The proof for the optimality of the solution
C∗ under the constraints follows from the exhaustive
search enumeration for the exact algorithm we presented
for k-connected center. It follows from Lemma 3.4 that
the configuration C∗ guarantees connectivity over te
timesteps. The Q loop in Algorithm 1 runs computations
over subsets of P of size

(

n
d+1

)

for each of the k
centers, and the inner loop performs computations over
all spanning trees for a graph with k nodes. Since
convex quadratically constrained quadratic programs can
be solved in polynomial time and we assume n ≥ k we
have that the dominating complexity is nO(k).

IV. APPROXIMATIONS

A. Tracking a Representative Set of Sensors

For large numbers of sensors n, computing the exact
solution for the k-connected centers can consume a
prohibitive amount of time. It would be more desirable
to instead compute the exact solution over a carefully
chosen subset of sensors in a way that the induced
approximation error can be bounded.

Theorem 4.1: For every α ≥ 1, an α-approximation
to the k-center of a set P ⊆ R

d is an (3 + 2α)-
approximation to the k-connected center of P .

Proof: (sketch) Let C∗ be a connected k-center of
P , and let C be an α-approximation for the k-center
of P . By definition, rb(P,C) = max {r(P,C), b(C)},
r(P,C∗) ≤ rb(P,C∗), and r(P,C) ≤ αr(P,C∗).
Combining the last inequalities yields

r(P,C) ≤ αr(P,C∗) ≤ αrb(P,C∗). (17)

Hence,

rb(P,C) ≤ max {αrb(P,C∗), b(C)} . (18)

It is left to bound b(C). For every c ∈ C, define f(c) ∈
C∗ to be the closest center to c in C∗. For every c ∈ C∗,
define g(c) ∈ C to be the closest center to c in C. Let
G(C∗, T ∗) be an MBST of C∗. Let T = T1∪T2, where

T1 =
{(

g(c), g(c′)
)

| (c, c′) ∈ T ∗} , and

T2 =
{(

c, g(f(c))
)

| c ∈ C
}

∪
{(

g(f(c)), c
)

| c ∈ C
}

.

Since G(C∗, T ∗) is a spanning tree,

b(C) ≤ max
(c,c′)∈T

dist(c, c′). (19)

Suppose that (c, c′) ∈ T . It is not hard to verify that

dist(c, c′) ≤ (3 + 2α)r(P,C∗) (20)

by case analysis: (i) (c, c′) ∈ T1 and (ii) (c, c′) ∈ T2.

Together with (19), we obtain b(C) ≤ (3 +
2α)r(P,C∗). Plugging the last inequality in (18) proves

the theorem, as

rb(P,C) ≤ max {αrb(P,C∗), (3 + 2α)rb(P,C∗)}
≤ (3 + 2α)rb(P,C∗).

B. Coresets

To produce gains in efficiency we use a data structure
called a coreset for the k-center problem and prove
the same coreset has the desired properties for the k-
connected and reachable k-connected center problems.

Hence, running our exact Algorithm 1 on the coreset
S instead of P , would yield a (1 + ε)-approximation
to the k-centers of P . The corresponding running time
would be reduced then from nO(k) to |S|O(k). Clearly,
S = P is a coreset for P . However, if we can compute a
coreset of size |S| ≪ n the running time on the coreset
would be significantly smaller.

input : A set P ⊆ R
d of n robots, k ≥ 1

centers, and a constant ε > 0
output: A (k, ε)-coreset S of size O(kε ) for P

1 i← 0; P0 ← P ;
2 while |Pi| > k do

3 Pick a random set Ti of k robots from Pi ;
4 Remove half of the closest robots Qi ⊆ Pi

to Ti ;
/* Continue recursively with

the remaining robots. */

5 Pi+1 ← Pi \Qi ;
6 i← i+ 1;

end

7 T ← T0 ∪ · · · ∪ Ti−1 ∪ Ti;
8 for each p ∈ T do

9 Construct a d-dimensional grid Gp of side

length (ε/
√
d) ·Dist(P, T ) that is centered

at p10 Pick an arbitrary representative robot
q ∈ P from every non-empty cell of Gp

end

11 S ← the union of representatives that were
selected at Line 8;

12 Return S

Algorithm 2: A (k, ε)-coreset S for P

Definition 4.2 ((k, ε)-coreset for k-center problem):

Let P be a set of points in R
d, k ≥ 1 be an integer,

and ε > 0 be a constant. A set S ⊆ P is called a
(k, ε)-coreset for P if for every given set of k centers
C in R

d, we have
r(S,C) ≤ r(P,C) ≤ (1 + ε)r(S,C). (21)

A (k, ε)-coreset S for the k-center problem is also
a (k, ε)-coreset for the reachable k-connected center
problem so that for any C in R

d where |C| = k it
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holds that

rb(S,C) ≤ rb(P,C) ≤ (1 + ε)rb(S,C). (22)

This follows from (21) since the bottleneck edge is
only a function of C and not the input set P and
rb(P,C) = max{r(P,C), b(C)}. Since configurations

C̃ that satisfy the reachability condition from (16) are a
subset of C, and Equation (21) holds for all C then

this property also holds for any constrained sets C̃.
Algorithm 2 returns a coreset S as stated in the following
theorem whose proof can be found in [14]:

Theorem 4.3: Let S ⊆ P be a set of points that is
returned by a call to Algorithm 2 with P ⊆ R

d, k ≥ 1
and ε > 0. Then, with high probability, S is a (k, ε)-
coreset for P . That is, for every set C of k centers in
R

d we have

rb(S,C) ≤ rb(P,C) ≤ (1 + ε)rb(S,C).

The running time of the algorithm is O(nk).
Since we have that the set S returned by Algorithm 2

is a (k, ε)-coreset for P we have that rb(S, C̃) ≤
(1+ ε)rb(P,C∗) where C̃ is the reachable k-connected
center computed over the coreset S and C∗ is the
reachable k-connected center computed over the entire
input set P since

rb(S, C̃) ≤ rb(P, C̃) ≤ (1 + ε)rb(S, C̃)

≤ (1 + ε)rb(S,C∗) ≤ (1 + ε)rb(P,C∗).

This formalized in the following corollary:

Corollary 4.4: Let P be a set of n points and let
ε > 0 be a constant. Then a (1 + ε)-approximation for
the reachable k-connected center of P can be computed
in O(nk) + (kε )

O(k) time.

Empirical results showing the reduction in the ap-
proximation error with size of the coreset is shown in
Figure 4.

Overview of Algorithm 2. We pick a small ran-
dom sample T1 from P . Such a random sample has
the property that it “hits" large clusters Q1 of robots,
but probably misses outliers. Hence, in Line 4 we
remove only the half closest robots to T1, which are
approximated well, and keep the remaining robots. We
continue recursively until no robots are left. This yields
O(log n) iterations that corresponds to O(log n) sample
sets. Since T ⊆ P we have that r(S,C∗) ≤ r(P,C∗) for
the k-center of P . In Lines 8–11 we turn this O(1)-factor
approximation into O(ε)-approximation by constructing
a grid Gp around every robot p in S. The distance
between two points that are in the same cell of the grid
is at most εrb(P,C∗)

Corollary 4.5: Let P be a set of n robots locations
in R

d, k ≥ 1 be an integer, and ε > 0 be a constant.

Let S be the output of Algorithm 2, and let C̃ be the
reachable k-center of S computed by Algorithm 1. Then

C̃ is a (1 + ε)-approximation to the reachable k-center
of P .
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Fig. 2: Effect of sensor velocity on expiration time studied for a fixed
R = 60m and communication (router) vehicle speed vC = 1.5m/s.
Different curves correspond to different ratios of comm vehicles to
sensors k/n and the slope of the curves become shallower as the
number of router vehicles k increases per unit area.

V. RESULTS

In this section we provide empirical results that study
i) the effect of sensor velocity and ratio of centers k to
sensors n on the expiration time te (see Figure 2), ii)
computation vs. expiration time and how the expiration
time can be used as a guide for switching between exact
and approximate methods (see Figure 3), and iii) the
approximation error induced by using a representative
set S vs. the size of this representative set (see Figure 4).

We examine two sensor behaviors, where 1) sensors
are distributed uniformly over a fixed area but vary their
maximum velocities and 2) sensors begin at the center
of the environment and move outwards radially at a
speed of 1m/s permitting worst-case analysis. For the
first case we investigate the effect of increasing sensor
velocities on the expiration time, or minimum bound on
the time that the centers generated by Algorithm 1 are
guaranteed to maintain communication with the sensors.
It must hold that the maximum allowable velocity of
the centers is at least that of the sensors in order to
maintain connectivity. We also vary the ratio of sensors
to communication vehicles in order to demonstrate how
a growing density of communication vehicles increases
the attainable expiration times.

The second case assumes a fixed number of 2 centers
that must provide connectivity for 5 sensors that are
moving radially outward from the environment center.
Figure 3 demonstrates the motivation for switching
from an exact optimization method, to an approximate
method that uses a coreset. We perform this switch
when the computation time of the exact algorithm from
Algorithm 1 reaches the expiration time and thus the
center locations must be updated more quickly in order
to maintain connectivity. We show that performing the
exact algorithm over a coreset of size n/2 improves our
computation time 12-fold with an average approxima-
tion cost of 1.13 · OPT . As the sensor vehicles move
farther outwards towards the communication limits of
the centers we can switch to a (3 + 2α)-approximation
algorithm which computes a k-connected center solution
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Fig. 4: This plot shows aggregate results over 1000 runs for the error
induced by using a representative set of size |S| for the input set P vs.
increasing representative set size. The plot shows that a coreset (solid
line) provides better performance with approximation error ε ≤ 0.34
vs ε = 3.8 for a uniform random sample (dashed line) for only |P |/2
sample points when |P | = 30, and ε ≤ 0.05 vs. ε = 2.7 for a uniform
random sample with less than |P |/3 sample points when |P | = 300.

in 0.01 seconds but at an approximation cost of (3+2α).

Figure 4 shows the improvement in the induced error,
ε, of using a coreset as a representative set for P vs.
the size of the representative set. We compute a 2-
approximation to the k-center cost on different sized
input sets,|P | = 30 and |P | = 300. This plot shows the
ratio of this k-center cost computed over a representative
set to the k-center cost computed over the entire input
set P . We contrast the performance of using a uniform
random sample (dashed line) to that of using a coreset
(solid line) and show that the coreset provides better
performance with approximation error ε ≤ 0.34 for only
n/2 sample points for n = 30 and ε ≤ 0.05 for less
than n/3 sample points when n = 300. Since the com-
putation time for computing the exact k-center cost is

exponential, even for small input sets the computational
savings is significant using coresets.

VI. CONCLUSION

In this work we define a formal framework, design
provable algorithms, and provide empirical case studies
for the problem of providing communication cover-
age to mobile robots that are moving over unknown
trajectories. We develop a reachable k-connected cen-
ters approach and return a solution of router vehicle
placements that maximize the amount of time over
which connectivity is guaranteed regardless of sensor
movement during that time.
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