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Abstract

We study rollout algorithms which combine limited
lookahead and terminal cost function approximation in
the context of POMDP. We demonstrate their effec-
tiveness in the context of a sequential pipeline repair
problem, which also arises in other contexts of search
and rescue. We provide performance bounds and em-
pirical validation of the methodology, in both cases of
a single rollout iteration, and multiple iterations with
intermediate policy space approximations.

Problem Definition

•Consider a partially observable, α-discounted Markov
decision problem, where the goal is to optimize repair of
a partially observed damaged pipepline.

•Underlying system state, i = (x, f1, f2 · · · fN), where N
is the number of segments in the pipeline,
x ∈ {1, · · · , N} is the current location of the agent, and
fj ∈ {0 · · · 4} ∀j ∈ [1, N ] is the segment’s damage level

•Transition probabilities pij(u)
•Belief state b = (b(1), . . . , b(n)), where b(i) is the
conditional probability that the state is i, given all the
observations and controls up to the current time.

•Control space U = {go left, go right, fix damage}
•The damage status z(x) of the current position x is
observed exactly.

•Expected stage cost at i, g(i, u) depends on the damage
level of each pipeline segment.

•φ(b, u, z) is the next belief state after applying action u
and observing z on current belief b:

•Bellman’s equation for our problem:

J∗(b) = min
u∈U

n∑
i=1

b(i)g(i, u) + αEz{J∗(φ(b, u, z))}

•Damage level of each segment of the pipeline becomes
progressively worse according to a Markov chain

Approach

•We use limited lookahead in combination with
truncated rollout to obtain an approximation to J∗ and
a corresponding suboptimal policy.

Figure 1: One-step lookahead, rollout with policy µ and terminal
cost approximation J̃

Pipeline Repair Problem as a POMDP:

Figure 2: Parameters of proposed solution framework

Cost Approximation using Neural Net J̃: We used
one million rollout samples from a greedy policy applied to
random initial states, to train a 2-layer neural network to
approximate the terminal cost.

Rollout Policy and Approximation using an Ide-
alized Pipeline Model: This model assumes,
•At most one spot is damaged.
•Belief (x, P ′); x-current position P ′ = [p′1, p′2, . . . p′N ],
vector of probabilities indicating likelihood of damage,
mapped from original system state (x, P ), k ∈ [1, N ]

•At each time t, the agent moves in the direction that
minimizes the expected shortest path to the terminal
state in the idealized problem.

•We use a good policy based on this model as a heuristic
to select actions in the full problem.

Results on Performance Bound

Performance Bound: The theoretical bound on gener-
ated policy µ̃ with limited l-step lookahead, m-step policy
µ rollout followed by cost approximation J̃ is given by,∥∥Jµ̃ − J∗∥∥ ≤ 2αl

1− α

∥∥∥Tmµ J̃ − J∗∥∥∥ (1)

where, Tmµ is the Bellman operator corresponding to µ ap-
plied m times and Jµ̃ is the cost function of the generated
policy µ̃. We study a related performance bound in simu-
lation given below:

Jµ̃(b)− J̃(b) ≤ maxb′(TµJ̃(b′)− J̃(b′))
1− α

, for all b (2)

Figure 3: 1-step lookahead performance bound of rollout and terminal
cost approximation using idealized pipeline model

Results on Rollout Methods

Results on Rollout Methods

Figure 4: Performance evalution of rollout policies with 1-4 step looka-
head and different heuristic policies.

Results of Approximate PI

Figure 5: Approximate policy iteration with a greedy initial policy
trained for 4 iterations, to solve case 1 of the Pipeline Problem.

Figure 6: Approximate policy iteration with a neural network which is
trained to classify actions taken by a lookahead rollout policy, which
uses the policy from the previous iteration as a base heuristic.
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