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Abstract— We present a novel method for model learning
in hybrid discrete-continuous systems. The approach uses
approximate Expectation-Maximization to learn the Maximum-
Likelihood parameters of a switching linear system. The ap-
proach extends previous work by 1) considering autonomous
mode transitions, where the discrete transitions are conditioned
on the continuous state, and 2) learning the effects of control
inputs on the system. We evaluate the approach in simulation.

I. INTRODUCTION

Stochastic hybrid discrete-continuous models have been
used to represent a large number of physical and biological
systems[1], [2], [3]. A great deal of recent work has proposed
methods for control and state estimation with such systems,
for example [4], [5], [6], [2], [7], [8]. These approaches
typically rely on accurate models of the hybrid system, how-
ever specifying these models manually is often challenging.
We must therefore determine hybrid system models from
observed data. Since the discrete and continuous dynamics of
such models are coupled, partially observable and stochastic,
this is a very challenging problem. One approach in dealing
with hybrid-discrete systems is to first map continuous data
to discrete data to use for the purposes of learning as in
[9], [10]; alternatively, our approach is to deal directly with
continuous observations.

In the case of linear systems with only continuous dy-
namics, previous work ([11], [12]) developed methods to
determine the Maximum-Likelihood (ML) model parameters
using an Expectation-Maximization(EM)[13] approach. This
approach guarantees convergence to a local maximum of
the likelihood function. More recent work extended this
approach to Jump Markov Linear Systems(JMLS)[14], [15].
These systems have linear continuous dynamics and Marko-
vian discrete transitions; in this case the discrete dynamics
are independent of the continuous state. [14] used an ‘ap-
proximate’ EM approach to learn the parameters of JMLS.
Due to the approximation introduced in the Expectation Step
(E-Step), this approach does not have guaranteed conver-
gence. [15] used an approach inspired by EM to guaran-
tee convergence; this approach iterates between calculating
the maximum likelihood discrete model and the maximum
likelihood continuous model. This is analogous to ‘hard’
EM, where instead of using distributions over the unknown
variables, only the most likely values are used.
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In this paper we present a new approach to hybrid model
learning that extends this work in three ways. First, we
consider systems where transitions in the discrete state do
depend on the continuous state; we call these autonomous
mode transitions. Second, we extend the work of [14], [15],
[16] to learn explicitly the dependence of control inputs on
the system dynamics. Finally, we consider ‘soft’ EM, where
a distribution over the hidden variables is used, rather than
just the most likely values.

In Section II we define a Linear Probabilistic Hybrid Au-
tomaton and state the hybrid model learning problem. In Sec-
tion III we review general Expectation-Maximization [13],
and in Section IV we give an overview of the new hybrid
model learning approach before describing its key compo-
nents in Sections V and VI. Finally, in Section VII we
provide simulation results.

II. PROBLEM STATEMENT

Prior work defined the Probabilistic Hybrid Automaton
(PHA)[2]. In this paper we are concerned with a restricted
type of Probabilistic Hybrid Automaton, which we refer to
as a Linear Probabilistic Hybrid Automaton (LPHA). The
continuous dynamics for a LPHA are given by:

xt+1 = A(mt)xt + B(mt)ut + ωt

yc,t+1 = C(mt)xt+1 + D(mt)ut + νt, (1)

where x ∈ �nx is the continuous state and m ∈ Xd is the
discrete state, or mode. We use the subscript notation xt to
denote the value of variable x at time t, and use xt2

t1 to denote
the sequence xt1 , . . . ,xt2 . The variables ω and ν are process
and observation noise respectively, which we restrict to be
zero-mean, Gaussian white noise with covariance Q(mt) and
R(mt), respectively. The initial distribution p(x0,m0) is a
sum-of-Gaussians, where p(x0|m0) is a Gaussian with mean
μ(m0) and covariance V (m0).

The evolution of the discrete state is described by a
number of guard conditions ci ∈ G. Each guard condition
has an associated guard region Ci ⊂ �nx and a transition
probability matrix Ti such that Ti(m,n) = p(mt+1 =
m|mt = n,xt ∈ Ci). The guard regions form a partition of
the space �nx . For clarity we consider guard regions over the
continuous state only, however dealing with guards defined
over control inputs or output variables is straightforward
since these are fully observable.

The continuous model parameters θc(m) are defined
for each mode m ∈ Xd of a LPHA as the set
〈A(m), B(m), C(m),D(m), Q(m), R(m), V (m), μ(m)〉.
The discrete model parameters θd(m) are defined for each



guard condition ci ∈ G of a LPHA as the transition
probability matrix Ti. The hybrid model parameters for a
LPHA P are defined as the continuous model parameters
θc(m) for every mode m ∈ Xd and the discrete model
parameters θd(m) for each guard condition ci ∈ G. The
hybrid model learning problem is then:

Given a finite sequence of observations yT+1
1 , and

a finite sequence of control inputs uT
0 , determine

the hybrid model parameters θ that maximize the
likelihood p(yT+1

1 |θ).
Note that the hybrid model parameters do not include the
guard regions; learning of guard regions is a topic for future
research.

III. REVIEW OF EXPECTATION-MAXIMIZATION

In this section we review the general Expectation-
Maximization (EM) algorithm[13]. More thorough reviews
have been carried out by [17] and [18].

EM is an iterative approach for finding a local maximum
to a function, which is often the Maximum Likelihood
probability of some matrix of observations Y given a vector
of parameters θ, i.e. p(Y|θ). The maximizer of this value is
also the maximizer of the function:

g(θ) = log p(Y|θ). (2)

EM addresses the situation when the likelihood value p(Y|θ)
is not readily evaluated. An example of this is when there
are hidden variables so that only the distribution p(Y,X|θ)
is known explicitly. In this case we express the likelihood
using a marginalization over the hidden variables:

g(θ) = log
∫
X

p(Y,X|θ)dX. (3)

In this case X takes continuous values; in the case of
discrete-valued X, the integral is replaced by a summation.
The key difficulty in maximizing g(θ) is that it involves a
logarithm over an integral (or a large summation), which
is difficult to deal with in many cases[18]. It is, however,
possible to create a lower bound to g(θ) that instead involves
an integral or sum of logarithms, which is tractable. In EM,
Jensen’s inequality is used to give the lower bound:

g(θ) = log
∫
X

p(Y,X|θ)dX

≥
∫
X

p(X|Y, θk) log
p(Y,X|θ)
p(X|Y, θk)

dX := h(θ|θk), (4)

where θk is a guess for the value for the parameters θ at
iteration k of the EM algorithm. This bound can be written
in terms of an expectation over the hidden state X , and an
‘entropy’ term denoted H that does not depend on θ.

h(θ|θk) =
∫
X

p(X|Y, θk) log
p(Y,X|θ)
p(X|Y, θk)

dX

=
∫
X

p(X|Y, θk) log p(Y,X|θ)dX

−
∫
X

p(X|Y, θk) log p(X|Y, θk)dX

=EX|Y,θk

[
log p(Y,X|θ)]+ H. (5)
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Fig. 1. Expectation-Maximization finds a local maximum of the function
g(θ) through iterative lower bound maximization. Top: At each iteration
a lower bound h(θ|θk) is constructed, which touches g(θ) at the current
guess θk . Any value of θk+1 that increases h(θ|θk) must also increase
g(θ), as shown. Bottom: EM converges when θk is at a local maximum of
h(θ|θk) denoted θ∗, which, under smoothness assumptions, is guaranteed
to be a local maximum of g(θ).

The lower bound h(θ|θk) is the tightest possible bound[17],
and in particular at the current guess θk, the bound touches
the objective function g(θ).

The key idea behind the EM algorithm is to construct the
tractable bound h(θ|θk) given the current guess θk and then
to maximize the bound with respect to θ to give θk+1. The
bound h(θ|θk) involves an integral over logarithms rather
than the logarithm of an integral, which makes it tractable
for optimization in many cases. Because the bound h(θ|θk)
touches the objective function g(θ) at the current guess,
maximizing the bound with regard to θ guarantees finding
a value θ that increases the true objective function g(θ)
unless θk is a local maximizer of g(θ); in this case the
local optimum has been found[17]. EM therefore proceeds
as follows:

1) Initialization: Set k = 1. Initialize θk to initial guess.
2) Expectation Step: Given θk, calculate bound h(θ|θk).
3) Maximization Step: Set θk+1 to value of θ that

maximizes bound h(θ|θk).
4) Convergence Check: Evaluate g(θk+1). If g(θ) has

converged, stop. Otherwise set k = k+1 and go to 2).

For each k we have g(θk+1) ≥ g(θk), with equality only
if θk is a local maximizer. Hence EM guarantees that θk

will converge to a local maximizer of g(θ), and does so by
iteratively maximizing a tractable lower bound on g(θ). This
is illustrated in Fig. 1. In order for this convergence property
to apply, it is necessary that the bound h(θ|θk) touches the
objective function. Previous work has, however, shown that
‘approximate’ EM can be effective in practice despite lacking
an analytic convergence guarantee[14], [19]. In the following
sections we show that exact EM is intractable in the hybrid
model learning problem, but propose a tractable, approximate



EM approach that is effective in practice.

IV. OVERVIEW OF APPROACH

In this section we outline the new approach to hybrid
model learning for LPHA. The new approach uses EM as
described in Section III, except for the key difference that
the Expectation Step is approximated in order to ensure
tractability.

In order to solve the hybrid model learning problem
defined in Section II, we must maximize the value f(θ) =
p(yT+1

1 |θ). Using EM to do so as described in Section III
we first calculate the bound h(θ|θk) (Expectation Step) and
then maximize the bound (Maximization Step). In the case
of hybrid model learning, the hidden data X is comprised
of both the hidden continuous state sequence xT+1

0 and
the hidden discrete mode sequence mT

0 . The observed data
consists of the observation sequence yT+1

1 . The bound is
therefore:

h(θ|θk) = E
[
log p(yT+1

1 ,xT+1
0 ,mT

0 |θ)
]
+ H, (6)

where the expectation is calculated over the hybrid state
distribution p(xT+1

0 ,mT
0 |yT+1

1 , θk). Calculating this expec-
tation is not, in the general case, possible in closed form.
However in Section V we show how the structure of LPHA
can be exploited to make this possible. In doing so we enable
existing results for Linear Time Invariant(LTI) systems to be
used in the Maximization step, as described in Section VI.
These results make it possible for the maximum of the bound
(6) to be found analytically. Both the Expectation Step and
the Maximization step are intractable in practice, however,
because the number of mode sequences mT

0 is exponential
in the number of time steps T . In Section V we therefore
introduce an approximation to the bound h(θ|θk) that makes
the Expectation and Maximization Steps tractable.

V. EXPECTATION STEP FOR HYBRID MODEL LEARNING

In order to calculate the bound (6) analytically we first use
the law of iterated expectations to write the bound in terms
of an expectation over the continuous state, conditioned on
the discrete mode sequence, and an expectation over discrete
mode sequences.

h(θ|θk) = EmT
0 |yT+1

1 ,θk

[
ExT+1

0 |mT
0 ,yT+1

1 ,θk

[
lc
]]

+ H
lc = log p(yT+1

1 ,xT+1
0 ,mT

0 |θ). (7)

Writing the expectations out in full gives:

h(θ|θk) =
∑
mT

0

(
p(mT

0 |yT+1
1 , θk)

∫
p(xT+1

0 |mT
0 ,yT+1

1 , θk)

∗ log p(yT+1
1 ,xT+1

0 ,mT
0 |θ)dxT+1

0

)
+ H. (8)

In order to construct this bound we require two key val-
ues. The first value is p(yT+1

1 ,xT+1
0 ,mT

0 |θ), also known
as the ‘completed-data’ probability. This describes the
joint distribution over observation sequences and state se-
quences given the model parameters. The second value is

p(xT+1
0 ,mT

0 |yT+1
1 , θk), which is the distribution over the

hidden hybrid state given both the observed observation se-
quence and the current guess for the model parameters. The
calculation of these distributions is described in Sections V-A
and V-B.

A. Completed-Data Probability

In order to calculate the complete-data probability
p(yT+1

1 ,xT+1
0 ,mT

0 |θ), we first use the Markov properties
of LPHA to write the probability as:

p(yT+1
1 ,xT+1

0 ,mT
0 |θ) =

p(x0,m0|θ)
T−1∏
t=0

p(mt+1|xt,mt, θ)

∗
T∏

t=0

p(yt+1|xt+1,mt, θ)p(xt+1|xt,mt, θ). (9)

We can calculate the individual terms in (9) by extending
standard results from LTI systems[12] to switching systems.
Given the definition of the process noise ω, we have:

p(xt+1|xt,mt, θ) = (2π)−
nx
2 |Q(mt)|−

1
2 e−

1
2 δ′

pQ−1(mt)δp

δp = xt+1 − A(mt)xt − B(mt)ut. (10)

Similarly, given the definition of the observation noise ν, we
have:

p(yt+1|xt+1,mt, θ) = (2π)−
ny
2 |R(mt)|−

1
2 e−

1
2 δ′

oR−1(mt)δo

δo = yt+1 − C(mt)xt+1 − D(mt)ut.
(11)

The initial probability distribution p(x0,m0) is given by:

p(x0,m0|θ) = p(m0)(2π)−
nx
2 |V (m0)|−

1
2 ∗

e−
1
2

[
x0−μ(m0)

]′
V −1(m0)

[
x0−μ(m0)

]
. (12)

The hybrid model parameters θ define the distribution of
all the necessary values in (9) through (12). Hence the
completed-data probability p(yT+1

1 ,xT+1
0 ,mT

0 |θ) can be
evaluated in closed form, as required.

B. Hybrid State Distribution

1) Exact Hybrid State Estimation: Calculation of the
distribution p(xT+1

0 ,mT
0 |yT+1

1 , θk) is a problem of hidden
state estimation for hybrid systems. Different variations of
this problem have received a great deal of attention in
recent years[1], [2], [20], [21]. The state estimation problem
addressed by [1], [2] among others, is to estimate the
current hybrid state given all observations up to the current
time step. These approaches build on early filtering work
by [22]. We extend the work of [2] in order to deter-
mine p(xT+1

0 ,mT
0 |yT+1

1 , θk), the hybrid state distribution
over the entire sequence. The key idea is to perform a
forward-backward, or ‘smoothing’, Kalman Filter recursion
for each possible mode sequence[23]: as noted by [22],
in a non-real time approach, smoothing is preferable to
a filtering algorithm such as [22]. This recursion deter-
mines p(xT+1

0 |yT+1
1 , θk,mT

0 ), the probability distribution



over continuous state sequences conditioned on a particu-
lar mode sequence. In addition the forward Kalman Filter
residuals are used to determine the observation likelihood
conditioned on a mode sequence, p(yT+1

1 |mT
0 , θ). Using

this likelihood we evaluate p(mT
0 |yT+1

1 , θ), the posterior
probability of the discrete mode sequence using Bayes’ Rule:

p(mT
0 |yT+1

1 , θ) =
p(yT+1

1 |mT
0 , θ)p(mT

0 |θ)∑
mT

0
p(yT+1

1 ,mT
0 |θ)p(mT

0 |θ)
. (13)

The desired joint distribution over mode sequences and
continuous state sequences p(xT+1

0 ,mT
0 |yT+1

1 , θk) is then
given by the expression:

p(xT+1
0 |yT+1

1 ,mT
0 , θk)p(mT

0 |yT+1
1 , θk). (14)

2) Approximate Hybrid State Estimation: The calculation
of the distribution (14) is intractable in practice, since
it requires performing a forward-backward Kalman Filter
recursion for every possible discrete mode sequence mT

0 ; the
number of such mode sequences is exponential in T . In a
similar spirit to [2], we therefore approximate the distribution
(14) by performing the Kalman Filter recursion only for
mode sequences in the restricted set S. This introduces
approximation in (14) in two distinct, but important ways.
First, the probability of mode sequences that are not in
S are assigned to zero. Second, the posterior probability
of each mode sequence in S cannot be evaluated exactly;
the sum in (13) over all possible mode sequences is no
longer possible. This means that p(mT

0 |yT+1
1 , θ) can only

be calculated accurate to a factor; this unknown factor is
the same for each mode sequence. This is a well-known
problem in approximate inference; a standard approach is
to choose the factor so that the approximated posteriors,
denoted p̃(mT

0 |yT+1
1 , θ), sum to one:

p̃(mT
0 |yT+1

1 , θ) =
1
c
p(mT

0 |yT+1
1 , θ), (15)

where c is a normalization constant given by:

c =
∑

mT
0 ∈S

p(mT
0 |yT+1

1 , θk). (16)

Denoting the approximate joint distribution as
p̃(xT+1

0 ,mT
0 |yT+1

1 , θk), we have:

p̃(xT+1
0 ,mT

0 |yT+1
1 , θk)

=

{
p(xT+1

0 |yT+1
1 , θk,mT

0 )p̃(mT
0 |yT+1

1 , θk) mT
0 ∈ S

0 mT
0 /∈ S.

(17)

Given this approximation of p(xT+1
0 ,mT

0 |yT+1
1 , θk), we can

write the approximation of the bound h(θ|θk) as:

h̃(θ|θk) =
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∫
p(xT+1

0 |mT
0 ,yT+1

1 , θk)

∗ log p(yT+1
1 ,xT+1

0 ,mT
0 |θ)dxT+1

0

)
+ H̃. (18)

...

...

0m ...1m 2m 1−Tm Tm3m

Fig. 2. N -best enumeration. At each time step t in the sequence, N
sequences are stored. The successors of these sequences are enumerated,
and the N partial sequences mt+1

0 with the greatest posterior probability
p(mt+1

0 |yt+2
1 , θk) are retained. In this example N = 4 and the sequences

retained at time T are shown in bold.

Note that h(θ|θk) is a special case of h̃(θ|θk) for which the
set S comprises all possible mode sequences mT

0 .
The technical challenge in performing the approximation

(17) is to choose the set of mode sequences S. Previous
work in hybrid state estimation[2] introduced the idea of
capturing as much of the probability mass of the true distri-
bution p(xT+1

0 ,mT
0 |yT+1

1 , θk) as possible in the approximate
distribution, by choosing the a posteriori most likely mode
sequences. In the Expectation-Maximization approach for
hybrid learning we successively maximize a lower bound
on the log likelihood g(θ). The exact bound h(θ|θk) is
the tightest bound possible[17], hence we choose the ap-
proximated bound h̃(θ|θk) to be as close as possible to
the exact bound h(θ|θk). In order to do so we use the
same heuristic as for approximate hybrid state estimation,
namely to capture as much of the probability mass of the
true distribution p(xT+1

0 ,mT
0 |yT+1

1 , θk) as possible in the
approximate Expectation Step. We therefore aim to include
in S the N most likely mode sequences.

Calculation of the N most likely mode sequences is a
challenging problem in itself. We use the iterative approach
introduced by [2]. This approach calculates for each time
step t = 1, . . . , T the N partial sequences mt

0 that maximize
p̃(mt

0|yt+1
1 , θk), restricting the search to sequences that are

successors of the N partial sequences mt−1
0 stored at time

step t−1. The algorithm is illustrated in Fig. 2. Although this
algorithm does not guarantee finding the most likely N se-
quences, in most cases it is sufficient and, most importantly,
the algorithm is linear in the number of time steps.

In summary, we have introduced an approach for perform-
ing an approximate Expectation Step of the EM algorithm
for hybrid model learning. The approach, described in full in
Table I, makes calculation of an approximation to the bound
h(θ|θk) tractable by restricting the number of discrete mode
sequences considered to the set S. In Section VII we show
how the number of sequences N affects the performance of
the learning algorithm.



1) Initialization. Initialize the set S of N -best partial sequences
to contain the initial mode m0 and assign t = 0.

2) K-best Enumeration. Find the N partial sequences mt+1
0

that maximize the probability p̃(mt+1
0 |yt+2

1 , θk). Evaluation
of this probability requires performing a forward Kalman
Filter step as described in [2]. Assign the set S to contain
only these sequences.

3) If t < T , set t = t + 1 and go to 2). Otherwise go to 4).
4) Backward Kalman Filter Recursion. For each com-

plete mode sequence mT
0 in S, perform a backward

Kalman Filter recursion to determine the probability
p̃(xT+1

0 ,mT
0 |yT+1

1 , θk). The forward Kalman Filter part of
this process has already been performed in 2).

TABLE I

APPROXIMATE EXPECTATION STEP FOR LPHA

VI. MAXIMIZATION STEP FOR HYBRID MODEL

LEARNING

In the Maximization Step the bound h̃(θ|θk) must be
maximized over θ. It is only strictly necessary for h̃(θ|θk)
to be increased at each iteration, rather than maximized, for
convergence of the EM algorithm; however in this section we
show that for hybrid model learning in LPHA, the maximum
of h̃(θ|θk) can be found in closed form. In Section VI-
A we find the optimal continuous parameters θc, while in
Section VI-B we find the optimal discrete parameters θd.

A. Maximization Step for Continuous Model Parameters

The key insight in estimating the continuous model pa-
rameters is that for a given mode sequence, existing results
for LTI systems[12] can be used to find the maximum.
We express the full bound (8) as a summation over mode
sequences. To find the maximum of h̃(θ|θk) we set its
derivative with respect to θc to zero. We can write this
derivative as a summation over the derivative for each mode
sequence:

∂h̃(θ|θk)
∂θc

=
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∗ ∂

∂θc

∫
xT+1

0

p(xT+1
0 |mT

0 ,yT+1
1 , θk)

∗ log p(yT+1
1 ,xT+1

0 ,mT
0 |θ)dxT+1

0

)
= 0.

(19)

The optimal values for A(m) and B(m) are found by
summing the LTI results from [12] over the mode sequences
in S to give the following equations:∑
mT

0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

Pt+1,t(mT
0 )
)

=

A∗(m)
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

Pt(mT
0 )
)

+ B∗(m)
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

utx̂t
′(mT

0 )
)

(20)

∑
mT

0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

x̂t+1ut
′
)

=

A∗(m)
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

x̂t(m
T
0 )u

′
t

)

+ B∗(m)
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

utut
′
)

,

(21)

where F(mT
0 ) is the set of time steps in the sequence mT

0 for
which the mode is m. Members of F(mT

0 ) are integers in
the range [0, T ]. Solving the set of linear equations (20), (21)
yields the optimal values for A(m) and B(m). Similarly the
optimal values for C(m) and D(m) are found by performing
a weighted sum over the LTI results from [12] to give the
system of linear equations:

∑
mT

0

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

yt+1x̂t+1
′(mT

0 )
)

=

C∗(m)
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

Pt+1(mT
0 )
)

+D∗(m)
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

utx̂t+1
′(mT

0 )
)

(22)∑
mT

0 ∈S

(
p̃(mT

1 |yT+1
1 , θk)

∑
t∈F(mT

0 )

yt+1ut
′
)

=

C∗(m)
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

x̂t+1(m
T
0 )ut

′
)

+ D∗(m)
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

utut
′
)

.

(23)

Using the optimal values for A(m), B(m), C(m) and
D(m) we obtain the optimal covariance matrices for the
noise processes:

Q∗(m) =
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

|F(mT
0 )|

∑
t∈F(mT

0 )

(
Pt+1(mT

0 )

−A∗(m)Pt,t+1(mT
0 ) − B∗(m)utx̂t+1

′(mT
0 )
))

(24)

R∗(m) =
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

|F(mT
0 )|

∑
t∈F(mT

0 )

(
yt+1

−C∗(m)x̂t+1(m
T
0 ) − D∗(m)ut

)
yt+1

′
)

. (25)



Finally, the optimal parameters for the initial continuous
distribution are given by:

μ∗(m) =
∑

{mT
0 |m0=m}

p̃(mT
0 |yT+1

1 , θk)x̂0
′(mT

0 )

V ∗(m) =
∑

{mT
0 |m0=m}

p̃(mT
0 |yT+1

1 , θk)P0,0(mT
0 ), (26)

where the summation is over the discrete mode sequences
mT

0 for which the initial mode m0 is the same as m.
In (20) through (26) we use the following definitions:

x̂t(m
T
0 ) =E

[
xt|mT

0 ,yT+1
1 , θk

]
Pt1,t2(m

T
0 ) =E

[
xt1xt2

′|mT
0 ,yT+1

1 , θk
]
. (27)

We have therefore shown that for LPHA, calculation of
the optimal continuous parameters in the maximization step
can be carried out in closed form. By choosing the set S
to contain a subset of the possible discrete mode sequences
we make this calculation tractable despite the exponential
number of such sequences.

B. Maximization Step for Discrete Model Parameters

We now maximize the bound h̃(θ|θk) with respect to
the discrete parameters θd. For each guard condition ci we
must find the optimal value of the transition matrix Ti. It
is not sufficient simply to set the derivative of h̃(θ|θk) with
respect to each element of Ti to zero; in order to ensure
that Ti describes a valid transition probability matrix, we
must impose the constraint that each column in Ti has
elements that sum to one. We therefore perform the following
constrained optimization for every mode m ∈ Xd and guard
i ∈ C:

Maximize over Ti(j,m), j = 1, . . . , |Xd| : (28)

h̃(θ|θk)
Subject to:

|Xd|∑
j=1

Ti(j,m) = 1. (29)

We use a Lagrange multiplier approach to solve this
optimization. The Lagrangian L is given by:

L = h̃(θ|θk) + λ

(|Xd|∑
j=1

Ti(j,m) − 1
)

, (30)

where λ is a Lagrange multiplier. We must set the derivative
of L with respect to each term Ti(j,m) as well as λ to zero.
In order to do so we must evaluate the expression ∂h̃(θ|θk)

∂Ti(j,m) :

∂h̃(θ|θk)
∂Ti(j,m)

=
∂

∂Ti(j,m)

∑
mT

0 ∈S
p̃(mT

0 |yT+1
1 , θk)∗

T∑
t=1

∫
p(xt−1|yT+1

1 ,mT
0 , θk) log p(mt|mt−1,xt−1, θ)dxt−1.

(31)

Evaluating the derivative in this expression is made challeng-
ing by the dependence of mode transitions on the continuous
state. However since the distribution p(mt|mt−1,xt−1, θ)
has a constant value for each guard condition ci, we can
rewrite the integral over xt−1 as a sum over guard conditions:

∂h̃(θ|θk)
∂Ti(j,m)

=
∂

∂Ti(j,m)

∑
mT

0 ∈S
p̃(mT

0 |yT+1
1 , θk)

∗
T∑

t=1

∑
ci∈G

pci
(mT

0 ) log Ti(mt,mt−1), (32)

where pci
(mT

0 ) is the probability that guard condition ci is
satisfied given the discrete mode sequence mT

0 , the observa-
tion sequence yT+1

1 and the current guess of the parameters
θk. This probability can be written as:

pci
(mT

0 ) =
∫
Ci

p(xt−1|yT+1
1 ,mT

0 , θk)dxt−1, (33)

where Ci is the region of xt−1 for which the guard ci

is satisfied. Evaluating (33) requires integrating a Gaussian
over Ci. Prior work has shown that for special classes of
guard conditions ci such as rectangular and linear guards,
the integral can be evaluated efficiently using a lookup of
Gaussian cumulative distribution functions[2]. Using this
approach we can evaluate the derivative in (32) with respect
to Ti(j,m):

∂h̃(θ|θk)
∂Ti(j,m)

=
∑

mT
0 ∈S

(
p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 )

pci
(mT

0 )
Ti(j,m)

)
,

(34)

where F(mT
0 ) contains the time steps in mT

0 for which
mt−1 = m and mt = j. Using the expression (34) we
now set to zero the derivative of the Lagrangian (30) with
respect to Ti(j,m) to yield:

λ · Ti(j,m) = −
∑

mT
0 ∈S

p̃(mT
0 |yT+1

1 , θk)∗
∑

t∈F(mT
0 )

pci
(mT

0 ). (35)

We now sum over each target mode j to yield:

λ

|Xd|∑
j=1

Ti(j,m) = −
|Xd|∑
j=1

( ∑
mT

0 ∈S
p̃(mT

0 |yT+1
1 , θk)∗

∑
t∈F(mT

0 )

pci
(mT

0 )

)
. (36)

Setting the derivative of L with respect to λ to zero yields the
original constraint (29). Substituting this into (36) gives the
optimal value for λ. We substitute this back into (35) to give



the following expression for the optimal value of Ti(j,m):

T ∗
i (j,m) =∑

mT
0 ∈S p̃(mT

0 |yT+1
1 , θk)

∑
t∈F(mT

0 ) pci
(mT

0 )

∑
m∈Xd

(∑
mT

0 ∈S p̃(mT
0 |yT+1

1 , θk)
∑

t∈F(mT
0 ) pci

(mT
0 )

) .

(37)

Using a similar Lagrange multiplier method to determine the
optimal initial mode distribution, we arrive at the following
optimal parameters:

p∗(m0 = m) =

∑
mT

0 ∈Q p̃(mT
0 |yT+1

1 , θk)∑
m∈Xd

(∑
mT

0 ∈Q p̃(mT
0 |yT+1

1 , θk)
) ,

(38)

where Q is the set of mode sequences mT
0 for which the

initial mode m0 = m. In other words, the optimal initial
discrete mode distribution is found by taking the weighted
fraction of initial modes in the sequence set S; the weighting
is the posterior probability of each mode sequence given the
current guess for the parameters.

In summary, we have shown that the Maximization Step
for LPHA can be performed analytically, by providing a
closed form expression for the hybrid parameters θ that
maximize the bound h̃(θ|θk). In the case where h̃(θ|θk) =
h(θ|θk), i.e. a complete Expectation Step has been carried
out, the Maximization step is typically intractable due to the
exponential number of mode sequences in the set S. How-
ever, by restricting the size of the set S, the Maximization
Step is made tractable. Note that the Maximization Step is
still guaranteed to find the maximum of the bound h̃(θ|θk).

VII. SIMULATION RESULTS

In this section we demonstrate the new model learning
approach using a simulated planetary rover example. We
consider the subsystem consisting of a motor and a wheel. An
intermittent fault causes the wheel to ‘stick’ at random, and
the probability of the wheel sticking is different depending
on whether the wheel is being driven forwards or backwards.
When stuck, the wheel experiences increased friction.

The wheel subsystem is modeled as a LPHA with two
modes. In Mode 1 the wheel operates normally, while Mode
2 the wheel is stuck. The hidden continuous state x is

[
i θ̇
]′

where i is the current in the motor and θ̇ is the angular
velocity of the wheel. Noisy observations y of the wheel
velocity are available through an encoder. The input u is the
voltage applied to the driver circuit.

The true continuous parameters are given by:

A(1) =
[ −0.0044 −0.0203

0.0366 0.1665

]
B(1) =

[
0.92
0.81

]

A(2) =
[ −0.0032 −0.0142

0.0256 0.1106

]
B(2) =

[
0.93
0.71

]
C(1) = C(2) =

[
0 1

]
C(1) = D(2) = 0. (39)

The true guard conditions are given by:

C1 = [−∞ 0] T1 =
[

0.9 0.2
0.1 0.8

]

C2 = [0 ∞] T2 =
[

0.5 0.1
0.5 0.9

]
, (40)

where the guard regions C1 and C2 are defined over θ̇.
While we would like to evaluate the performance of the

new algorithm against the likelihood p(yT+1
1 |θ), evaluation

of this is intractable. The change in the lower bound h̃(θ|θk)
can, however, be evaluated. We therefore analyze the con-
vergence of the algorithm in terms of this change. Fig. 3
shows the change in the lower bound over the course of
a typical learning run. The change in h̃(θ|θk) is always
positive, and decreases almost monotonically as learning
proceeds, indicating convergence of the learned parameters.
As has been previously demonstrated for LTI systems[12] the
continuous model parameters typically do not converge to the
true parameters. This is because, first, there are an infinite
number of equivalent LTI systems, and second, because the
EM algorithm is a local optimization approach. In many
cases, however, the discrete parameters do converge to values
close to the true ones. A typical case is shown in Fig 4.

Fig. 5 shows the effect of the number of tracked mode
sequences on the performance of the algorithm. We cannot
use the likelihood p(yT+1

1 |θ) to evaluate performance, but
since we are often interested in estimating the hidden mode,
we use the fraction of Maximum A Posteriori (MAP) mode
estimate errors at convergence as a performance criterion.
Counterintuitively, the number of tracked mode sequences N
has essentially no impact on the performance of the learning
algorithm. Extensive testing also showed that increasing N
does not, on average, increase the number of iterations to
convergence. This is a surprising empirical result which
warrants further investigation. These results motivate the use
of ‘hard’ EM, where the single most likely trajectory is
tracked, in order to minimize computation time.
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Fig. 3. Convergence of the approximate EM algorithm for hybrid model
learning for a typical run, with N = 10 and T = 100. The change in
the bound h̃(θ|θk) decreases almost monotonically as EM proceeds. This
shows convergence of the learned parameters.
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Fig. 4. Convergence of the discrete parameters for a typical run, with
N = 10 and T = 100. The transition probabilities for guard condition C1

(top) and for guard condition C2 (bottom) converge to values close to the
true ones (shown dashed).
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Fig. 5. Fraction of MAP mode estimation errors at convergence against
number of mode sequences tracked (N ) averaged over 20 random runs.
Convergence was defined as a change of less than 0.1 in h̃(θ|θk). For each
run, the initial continuous parameters were chosen randomly by perturbing
their true values by up to 50%, and the discrete transition probabilities
were chosen from a uniform distribution between 0 and 1. The error bars
represent two standard deviations. N has no almost effect on the MAP error.

VIII. CONCLUSION

We have presented a new approximate Expectation-
Maximization approach for learning the parameters of dy-
namic systems with hybrid discrete-continuous state. The
new method can handle transitions in the discrete state
that are conditioned on the continuous state, and can learn
the effects of control inputs on the system. Approximation
is introduced by tracking a subset of the discrete mode
sequences in the Expectation step. Simulation results showed
that the approach converges in practice, and that the number
of tracked mode sequences does not affect the performance
of the algorithm.
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